
Fehler! Kein Text mit angegebener Formatvorlage im Dokument.| 1

Part 1: Metamodel
Specification of the Asset Administration Shell

S P E C I F I C A T I O N

IDTA Number: 01001
Version 3.1.1

This specification is part of the Asset Administration Shell Specification series.

Version

This is version 3.1.1 of the specification IDTA-01001.

Previous version: 3.1

Dependencies

For the schemas derived from this document there is a dependency to the following parts of the “Specification of the
Asset Administration Shell” series:

• IDTA-01003-a Part 3a: Data Specification – IEC 61360 in version 3.1 [46]

If there is a bugfix of this parts, this shall be used.

Notice

Copyright: Industrial Digital Twin Association e.V. (IDTA)

IDTA Number: IDTA-01001

Version: 3.1.1

DOI: https://doi.org/10.62628/IDTA.01001-3-1-1

This work is licensed under a Creative Commons Attribution 4.0 International License.

SPDX-License-Identifier: CC-BY-4.0

July 2025

How to Get in Contact

Contact: IDTA

Sources: GitHub

Feedback:

• new issues, bugs

• Questions and Answers

Editorial Notes

History

This document (version 3.1) was produced by the Work Stream "Specification of the Asset Administration Shell" of the
Working Group "Open Technology" of the Industrial Digital Twin Association (IDTA). It is the first version published as
html document and maintained completely open source.

Version 3.0, a major release, was finalized from June 2022 to January 2023 by the joint sub working group "Asset
Administration Shell" of the working group "Reference Architectures, Standards and Norms" of the Plattform Industrie
4.0 and the working group "Open Technology" of the Industrial Digital Twin Association (IDTA). It is the first release
published by the Industrial Digital Twin Association.

1

https://industrialdigitaltwin.org/en/content-hub/aasspecifications
https://doi.org/10.62628/IDTA.01001-3-1-1
https://creativecommons.org/licenses/by/4.0/
https://industrialdigitaltwin.org/en/contact
https://github.com/admin-shell-io/aas-specs
https://github.com/admin-shell-io/aas-specs-metamodel/issues/new/choose
https://github.com/admin-shell-io/questions-and-answers
https://industrialdigitaltwin.org/

A major change consists in splitting the overall document into four parts: Part 1 (this document) covers the core
metamodel of the Asset Administration Shell, Part 5 covers the AASX package exchange format, Part 3 is a series that
covers the predefined data specifications and Part 4 covers the security metamodel. Another major change is that the
mapping rules for the different supported exchange formats (XML, JSON and RDF) are moved to the GitHub
repositories themselves that also contain the schemata. Part 2, the API Specification, was defined in a separate
document from the very beginning.

Version 3.0RC02 was produced from November 2020 to May 2022 by the sub working group "Asset Administration
Shell" of the joint working group of the Plattform Industrie 4.0 working group "Reference Architectures, Standards and
Norms" and the "Open Technology" working group of the Industrial Digital Twin Association.

Version 3.0RC01 of this document, published in November 2020, was produced from November 2019 to November
2020 by the sub working group "Asset Administration Shell" of the Plattform Industrie 4.0 working group "Reference
Architectures, Standards and Norms".

The second version V2.0 of this document was produced from August 2018 to November 2019 by the sub working
group "Asset Administration Shell" of the Platform Industrie 4.0 working group "Reference Architectures, Standards
and Norms". Version 2.0.l was published in May 2020.

The first version of this document was produced September 2017 to July 2018 by a joint working group with members
from ZVEI SG "Models and Standards" and the Plattform Industrie 4.0 working group "Reference Architectures,
Standards and Norms ". The document was subsequently validated by the platform’s working group "Reference
Architectures, Standards and Norms".

For better readability the abbreviation "I4.0" is consistently used for "Industrie 4.0" in compound terms. The term
"Industrie 4.0" continues to be used when standing on its own.

Versioning

This specification is versioned using Semantic Versioning 2.0.0 (semver) and follows the semver specification [36].

Conformance

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in BCP 14 RFC2119 RFC8174[1]:

• MUST word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute requirement of the
specification.

• MUST NOT This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition of the
specification.

• SHOULD This word, or the adjective "RECOMMENDED", mean that there may exist valid reasons in particular
circumstances to ignore a particular item, but the full implications must be understood and carefully weighed
before choosing a different course.

• SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid reasons in
particular circumstances when the particular behavior is acceptable or even useful, but the full implications should
be understood and the case carefully weighed before implementing any behavior described with this label.

• MAY This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to
include the item because a particular marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation which does not include a particular
option MUST be prepared to interoperate with another implementation which does include the option, though
perhaps with reduced functionality. In the same vein an implementation which does include a particular option
MUST be prepared to interoperate with another implementation which does not include the option (except, of
course, for the feature the option provides.)

2

https://semver.org/spec/v2.0.0.html
https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc8174

Terms and Definitions

Terms and Definitions

Please note: the definitions of terms are only valid in a certain context. This glossary applies only within the
context of this document.

If available, definitions were taken from IEC 63278-1 Edition 1.0 2023-12.

access control

protection of system resources against unauthorized access; a process by which use of system resources is
regulated according to a security policy and is permitted by only authorized entities (users, programs, processes,
or other systems) according to that policy

[SOURCE: IEC TS 62443-1-1]

application

software functional element specific to the solution of a problem in industrial-process measurement and control

Note 1 to entry: an application can be distributed among resources and may communicate with other
applications.

[SOURCE: IEC TR 62390:2005-01, 3.1.2]

asset

entity owned by or under the custodial duties of an organization, which has either a perceived or actual value to the
organization

Note 1 to entry: an asset can be single entity, a collection of entities, an assembly of entities or a composition of
entities.

EXAMPLE 1: examples for physical entities are equipment, raw material, parts components and pieces, supplies,
consumables, physical products, and waste.

EXAMPLE 2: software is an example of a digital asset.

EXAMPLE 3: a software license is an example of an intangible asset.

[SOURCE: IEC 63278-1:2023, editorial changes]

attribute

data element of a property, a relation, or a class in information technology

[SOURCE: IEC 63278-1:2023; ISO/IEC Guide 77-2; ISO/IEC 27460; IEC 61360]

Asset Administration Shell (AAS)

standardized digital representation of an asset

3

Note 1 to entry: Asset Administration Shell and Administration Shell are used synonymously.

[SOURCE: IEC 63278-1:2023, note added]

class

description of a set of objects that share the same attributes, operations, methods, relationships, and semantics

[SOURCE: IEC TR 62390:2005-01, 3.1.4]

capability

implementation-independent potential of an Industrie 4.0 component to achieve an effect within a domain

Note 1 to entry: capabilities can be orchestrated and structured hierarchically.

Note 2 to entry: capabilities can be made executable via services.

Note 3 to entry: the impact manifests itself in a measurable effect within the physical world.

[SOURCE: Glossary Industrie 4.0, minor changes]

coded value

value that can be looked up in a dictionary and can be translated

[SOURCE: ECLASS [2]]

component

product used as a constituent in an assembled product, system, or plant

[SOURCE: IEC 63278-1:2023; IEC 61666:2010+AMD1:2021 CSV, 3.6]

concept

unit of knowledge created by a unique combination of characteristics

[SOURCE: IEC 63278-1:2023; IEC 61360-1:2016, 3.1.8; ISO 22274:2013, 3.7]

digital representation

information and services representing an entity from a given viewpoint

EXAMPLE 1: examples of information are properties (e.g. maximum temperature), actual parameters (e.g. actual
velocity), events (e.g. notification of status change), schematics (electrical), and visualization information (2D and
3D drawings).

EXAMPLE 2: examples of services are asset services (for example providing the history of the configuration data
or providing the actual velocity) and asset related services (for example providing a simulation).

EXAMPLE 3: examples of viewpoints are mechanical, electrical, or commercial characteristics.

4

https://eclass.eu/support/technical-specification/data-model/conceptual-data-model

[SOURCE: IEC 63278-1:2023, editorial changes]

digital twin

digital representation, sufficient to meet the requirements of a set of use cases

Note 1 to entry: in this context, the entity in the definition of digital representation is typically an asset.

[SOURCE: IIC Vocabulary IIC:IIVOC:V2.3:20201025, adapted (an asset, process, or system was changed to an
asset)]

explicit value

commonly used concept, like numbers (e.g. 109, 25) which do not need lookup in dictionaries

[SOURCE: ECLASS]

identifier (ID)

identity information that unambiguously distinguishes one entity from another one in a given domain

Note 1 to entry: there are specific identifiers, e.g. UUID Universal unique identifier, IEC 15418 (GS1).

[SOURCE: Glossary Industrie 4.0]

instance

concrete, clearly identifiable component of a certain type

Note 1 to entry: an individual entity of a type, for example a device, is obtained by defining specific property
values.

Note 2 to entry: in an object-oriented view, an instance denotes an object of a class (of a type).

[SOURCE: IEC 62890:2016, 3.1.16 65/617/CDV, editorial changes]

instance asset

specific asset that is uniquely identifiable

EXAMPLE 1: examples of instance assets are material, a product, a part, a device, a machine, software, a
control system, or a production system.

[SOURCE: IEC 63278-1:2023, editorial changes]

operation

executable realization of a function

Note 1 to entry: the term method is synonymous to operation.

Note 2 to entry: an operation has a name and a list of parameters [ISO 19119:2005, 4.1.3].

5

https://eclass.eu/support/technical-specification/data-model/conceptual-data-model

[SOURCE: Glossary Industrie 4.0, editorial changes]

property

defined characteristic suitable for the description and differentiation of products or components

Note 1 to entry: the concept of type and instance applies to properties.

Note 2 to entry: this definition applies to properties as described in IEC 61360/ ISO 13584-42.

Note 3 to entry: the property types are defined in dictionaries (like IEC component data dictionary or ECLASS),
they do not have a value. The property type is also called data element type in some standards.

Note 4 to entry: the property instances have a value and are provided by the manufacturers. A property instance
is also called property-value pair in certain standards.

Note 5 to entry: properties include nominal value, actual value, runtime variables, measurement values, etc.

Note 6 to entry: a property describes one characteristic of a given object.

Note 7 to entry: the specification of a property can include predefined choices of values.

[SOURCE: according to ISO/IEC Guide 77-2] as well as [SOURCE: according to Glossary Industrie 4.0], Note 7
removed

qualifier

well-defined element associated with a property instance or submodel element, restricting the value statement to a
certain period of time or use case

Note 1 to entry: qualifiers can have associated values.

[SOURCE: according to IEC 62569-1]

service

distinct part of the functionality that is provided by an entity through interfaces

[SOURCE: IEC 63278-1:2023; IEC 60050-741:2020, 741-01-28]

Submodel

representation of an aspect of an asset

[SOURCE: IEC 63278-1:2023]

SubmodelElement

element of a Submodel

6

[SOURCE: IEC 63278-1:2023]

Submodel template

template for the representation of an aspect of an asset

[SOURCE: IEC 63278-1:2023]

Submodel template element

element of a Submodel template

[SOURCE: IEC 63278-1:2023]

system

interacting, interrelated, or interdependent elements forming a complex whole

[SOURCE: IEC 63278-1:2023; IEC TS 62443-1-1:2009, 3.2.123]

template

specification of the common features of an object in sufficient detail that such object can be instantiated using it

Note 1 to entry: object can be anything that has a type.

[SOURCE: according to ISO/IEC 10746-2]

type

hardware or software element which specifies the common attributes shared by all instances of the type

[SOURCE: IEC TR 62390:2005-01, 3.1.25]

type asset

(abstract) representation of a set of instance assets with common characteristics and features

Note 1 to entry: the set of instance assets may exist or may not exist.

EXAMPLE: Examples of type assets are type of material, a product type, a type of a part, a device type, a
machine type, a type of software, a type of control system, a type of production system.

[SOURCE: IEC 63278-1:2023]

variable

software entity that may take different values, one at a time

[SOURCE: IEC 61499-1]

Abbreviations Used in this Document

Abbreviation Description

AAS Asset Administration Shell

AASX Package file format for the Asset Administration Shell

7

Abbreviation Description

AML AutomationML, Automation Markup Language

API Application Programming Interface

BITKOM Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e. V.

BLOB Binary Large Object

CDD Common Data Dictionary

GUID Globally unique identifier

I4.0 Industrie 4.0

ID identifier

IDTA Industrial Digital Twin Association

IEC International Electrotechnical Commission

IRDI International Registration Data Identifier

IRI Internationalized Resource Identifier

ISO International Organization for Standardization

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OPC Open Packaging Conventions (ECMA-376, ISO/IEC 29500-2)

OPC UA OPC Unified Architecture maintained by the OPC Foundation

PDF Portable Document Format

RAMI4.0 Reference Architecture Model Industrie 4.0

RDF Resource Description Framework

REST Representational State Transfer

RFC Request for Comment

SOA Service Oriented Architecture

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

8

Abbreviation Description

UUID Universally Unique Identifier

UTC Universal Time Coordinated

VDE Verband der Elektrotechnik, Elektronik und Informationstechnik e.V.

VDI Verein Deutscher Ingenieure e.V.

VDMA Verband Deutscher Maschinen- und Anlagenbau e.V.

W3C World Wide Web Consortium

XML eXtensible Markup Language

ZIP archive file format that supports lossless data compression

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e. V.

Abbreviations of Metamodel

The following abbreviations are not used in the document but may be used as abbreviations for the elements in the
metamodel defined in this document.

Table 1. Abbreviations for Elements of the Metamodel

Abbreviation Description

AAS AssetAdministrationShell

Cap Capability

CD ConceptDescription

DE DataElement

DST DataSpecification Template

InOut inoutputVariable

In inputVariable

Prop Property

MLP MultiLanguageProperty

Range Range

Ent Entity

Evt Event

File File

9

Abbreviation Description

Blob Blob

Opr Operation

Out outputVariable

Qfr Qualifier

Ref ReferenceElement

Rel RelationshipElement

RelA AnnotatedRelationshipElement

SM Submodel

SMC SubmodelElementCollection

SME SubmodelElement

SML SubmodelElementList

[1] https://www.ietf.org/rfc/rfc2119.txt

[2] In IEC61360:2017, this refers to a "term" of a value list

10

https://www.ietf.org/rfc/rfc2119.txt

Preamble

Scope of this Document

The aim of this document is to define the structure of the Administration Shell to enable the meaningful exchange of
information about assets and I4.0 components between partners in a value creation network.

This part of the document focuses on how such information needs to be processed and structured. In order to define
these specifications, the document formally stipulates some structural principles of the Administration Shell. This part
does not describe technical interfaces of the Administration Shell or other systems to exchange information, protocols,
or interaction patterns.

This document focuses on:

• a metamodel for specifying information of an Asset Administration Shell and its submodels,

• an introduction to the need of mappings to suitable technologies used in different life cycle phases of a product,
providing mappings for XML, JSON, and RDF.

This document presumes some familiarity with the concept of the Asset Administration Shell. Some of the concepts
are described in Concepts AAS for convenience’s sake. The concepts are being standardized as IEC standard IEC
63278 series, [44] and [37]. The main stakeholders addressed in this document are architects and software
developers aiming to implement a digital twin using the Asset Administration Shell in an interoperable way.
Additionally, the content can also be used as input for discussions with international standardization organizations and
further initiatives. Please consult the continuously updated reading guide [38] for an overview of documents on the
Asset Administration Shell. The reading guide gives advice on which documents should be read depending on the role
of the reader.

Structure of the Document

All clauses that are normative have "(normative)" as a suffix in the heading of the clause.

Terms and Definitions provides terms and definitions as well as abbreviations, both for abbreviations used in the
document and for abbreviations that may be used for elements of the metamodel defined in this document.

Introduction gives a short introduction into the content of this document.

General Topics summarizes relevant, existing content from the standardization of Industry 4.0; i.e. it provides an
overview and explains the motives, but is not absolutely necessary for an understanding of the subsequent definitions.

Specification (normative) is the main normative part of the document. It stipulates structural principles of the
Administration Shell in a formal manner to ensure an exchange of information using Asset Administration Shells. A
UML diagram has been defined for this purpose.

Data Specifications explains how to define predefined data specifications, including those for defining concept
descriptions. A discussion on the difference of data specification templates, inheritance, qualifiers and categories can
be found in the UML#templates-inheritance-qualifiers-and-categories[Annex].

Mappings (normative) provides information on the exchange of information compliant to this specification in existing
data formats like XML, JSON, or RDF. For this purpose additional formats are defined as well as needed text
serializations of complex types.

Summary and Outlook summarizes the content and gives an outlook on future work.

Annex Concepts AAS contains additional background information on Asset Administration Shell.

Annex Value Only Serialization Example and example of a Value-Only serialization as explained in Mappings is given.

Annex Backus Naur Form defines the grammar language used in the specification. Annex UML contains information
about UML, while Annex xef:annex/uml-templates.adoc[] provides the tables used to specify UML classes etc. as used
in this specification.

11

Annex Grammar Semantic IDs for Metamodel explains how semantic identifiers for the elements of the metamodel
itself are derived.

Handling Constraints explains the numbering of constraints used in the specification.

Annex Usage Metamodel provides some hints for modelers. Annex Metamodel With Inheritance shows selected
metamodel diagrams including all inherited attributes for developers.

The Change Log describes metamodel changes compared to previous versions.

Finally, a Bibliography is given.

Working Principles

The work is based on the following principle: keep it simple but do not simplify if it affects interoperability.

To create a detailed specification of the Administration Shell according to the scope of Part 1 result papers published
by Plattform Industrie 4.0, the trilateral cooperation between France, Italy, and Germany, as well as international
standardization results were analyzed and taken as source of requirements for the specification process. As many
ideas as possible from the discussion papers were considered. See Annex Concepts AAS for more information.

The partners represented in the Plattform Industrie 4.0 and the Industrial Digital Twin Association (IDTA) and
associations such as ZVEI, VDMA, VDI/VDE and Bitkom, ensure that there is broad sectoral coverage of process,
hybrid, and factory automation and in terms of integrating information technology (IT) and operational technology (OT).

Design alternatives were intensively discussed within the working group. An extensive feedback process of this
document series is additionally performed within the working groups of Plattform Industrie 4.0 and IDTA.

Guiding principle for the specification was to provide detailed information, which can be easily implemented also by
small and medium-sized enterprises.

12

https://github.com/admin-shell-io/aas-specs-iec61360/issues/43
https://industrialdigitaltwin.org/
https://www.zvei.org/
https://www.vdma.org
https://www.vdi.de/en/home
https://www.vde.com/en
https://www.bitkom.org/EN

Introduction

This document specifies the metamodel of the Asset Administration Shell.

The general concept and the structure of the Asset Administration Shell is described in IEC 63278-1 (see Figure 1).

Figure 1. Asset Administration Shell and its Stakeholders (Source: IEC 63278-1)

These are the main specifics and stakeholders defined for the Asset Administration Shell:

• an Asset Administration Shell is associated to an asset;

• an Asset Administration Shell provides AAS interface(s);

• there are one or more Submodels listed in an Asset Administration Shell;

• an AAS responsible has an interest in an asset, and based on this interest creates and governs an Asset
Administration Shell;

• an AAS user application accesses an Asset Administration Shell via its AAS interface(s) for use by humans or for
automated processing;

• a Submodel template may serve as guidance for a Submodel.

• Submodels reference concept repositories;

• a Submodel template may be used to serve as guidance for a Submodel and references concept repositories;

• asset can provide asset services;

• Submodels may reference asset services via an asset integration and may also reference asset related services.

This document specifies a technology-neutral specification of the information metamodel of the Asset Administration
Shell in UML. It serves as the basis for deriving several different formats for exchanging Asset Administration Shells,
e.g. for XML, JSON, and RDF.

Figure 2 shows the different ways of exchanging information Asset Administration Shells. This part of the
"Specifications of the Asset Administration Shell" series is the basis for all of these types of information exchange.

13

Figure 2. Types of Information Exchange via Asset Administration Shells

File exchange (1) is described in detail in Part 5 of this document series.

The API (2) based on the information metamodel specified in this document is specified in Part 2 of the document
series "Specification of the Asset Administration Shell" (IDTA-01002) [37].

The I4.0 language (3) is based on the information metamodel specified in this document [47].

14

Specification (normative)

This clause specifies the information metamodel of the Asset Administration Shell.

An overview of the metamodel of the Asset Administration Shell is given in Subclause Overview. Subclause
Designators describes the classes and all their attributes in detail.

The legend of the UML diagrams and the table specification of the classes is explained in Annex UML Templates and
Annex UML. Readers familiar with UML may skip OMG UML General. It is however recommended to have a look at
the specifics used in this modelling, especially those on dealing with model references.

Overview

This clause gives an overview of the main classes of the Asset Administration Shell (AAS) metamodel.

Figure 3 shows the main classes to describe a single Asset Administration Shell.

An Asset Administration Shell represents exactly one asset (AssetAdministrationShell/assetInformation). Type assets
and instance assets are distinguished by the attribute AssetInformation/assetKind. See Core Classes for details.

Note: the UML modelling uses so-called abstract classes for denoting reused concepts like "HasSemantics",
"Qualifiable" etc.

In case of an Asset Administration Shell of an instance asset, a reference to the Asset Administration Shell
representing the corresponding type asset or another instance asset it was derived from may be added
(AssetAdministrationShell/derivedFrom). The same holds true for the Asset Administration Shell of a type asset. Types
can also be derived from other types.

15

External Concept Definitions

«external»
Property Definition

IEC 61360

AssetAdministrationShell
Identif iable

HasDataSpecification

+derivedFrom:
Reference[0..1]
+assetInformation:
AssetInformation
+submodel: Reference[0..*]

AssetInformation

+assetKind: AssetKind
+globalAssetId:
Identifier[0..1]
+specificAssetId:
SpecificAssetId[0..*]
+assetType: Identifier[0..1]
+defaultThumbnail:
Resource[0..1]

«enumeration»
AssetKind

Type
Instance
Role
NotApplicable

SpecificAssetId
HasSemantics

+name: LabelType
+value: Identifier
+externalSubjectId:
Reference[0..1]

Submodel

Identif iable
HasKind

HasSemantics
Qualifiable

HasDataSpecification

+submodelElement:
SubmodelElement[0..*]

Qualifier
HasSemantics

+kind: QualifierKind[0..1]
«Experimental»
+type: QualifierType
+valueType:
DataTypeDefXsd
+value: ValueDataType[0..1]
+valueId: Reference[0..1]

«abstract»
SubmodelElement

Referable
HasSemantics

Qualifiable
HasDataSpecification

Property
DataElement

+valueType:
DataTypeDefXsd
+value: ValueDataType[0..1]
+valueId: Reference[0..1]

Exemplary Submodel Element
"Property",

other submodel element
subtypes

include operations, collections,
files
etc.

Reference

submodel 0..*

Reference

derivedFrom
0..1

«external global
reference»

Figure 3. Overview Metamodel of the Asset Administration Shell

An asset may typically be represented by several different identification properties like the serial number, the
manufacturer part ID or the different customer part IDs, its RFID code, etc. Such external identifiers are defined as
specific asset IDs (AssetInformation/specificAssetId), each characterized by a user-defined name, a value, and the
user domain (tenant, subject in Attribute Based Access Control). See Asset Information Attributes for details.
Additionally, a global asset identifier should be assigned to the asset (AssetInformation/globalAssetId) as early as
possible to allow for consistent data exchange across the borders of a company or user domain.

Asset Administration Shells, submodels and concept descriptions need to be globally uniquely identifiable (
Identifiable). Other elements like properties only need to be referable within the model and thus only require a local
identifier (idShort from Referable). For details on identification, see Identification of Elements.

Submodels consist of a set of submodel elements. Submodel elements may be qualified by a so-called Qualifier.
There might be more than one qualifier per Qualifiable.

There are different subtypes of submodel elements like properties, operations, lists, etc. See Submodel Element
Types for details. A typical submodel element is shown in the overview figure: a property is a data element that has a
value of simple type like string, date, etc. Every data element is a submodel element (not visible in the figure but
implicitly the case, since DataElement is inheriting from SubmodelElement). For details on properties, see Property
Attributes.

Every submodel element needs a semantic definition (semanticId in HasSemantics) to have a well-defined meaning.
The submodel element might either refer directly to a corresponding semantic definition provided by an external
reference (e.g. to an ECLASS or IEC CDD property definition), or it may indirectly reference a concept description
(Concept Descriptions). See Matching Strategies for matching strategies.

16

A concept description may be derived from another property definition of an external standard or another concept
description (ConceptDescription/isCaseOf).

Note: in this case, most of the attributes are redundant because they are defined in the external standard.
Attributes for information like preferredName, unit etc. are added to increase usability. Consistency w.r.t. the
referenced submodel element definitions should be ensured by corresponding tooling.

If a concept description is not just a copy or refinement of an external standard, the provider of the Asset
Administration Shell using this concept description shall be aware that an interoperability with other Asset
Administration Shells cannot be ensured.

Data specification templates (DataSpecification) can be used to define a named set of additional attributes (besides
those predefined by the metamodel) for an element. The data specification template following IEC 61360 is typically
used for the concept description of properties, providing e.g. an attribute "preferredName". The <<template>>
dependency is used to denote recommended data specification templates. See Data Specifications for details.

Data specification templates like the template for IEC 61360 property definitions (Part 3a) are explicitly predefined and
recommended to be used by IDTA. See Data Specifications for details. If proprietary templates are used,
interoperability with other Asset Administration Shells cannot be ensured.

Besides submodel elements including properties and concept descriptions, other identifiable elements may also use
additional templates (HasDataSpecification). Data specification templates are selected at design time.

Figure 4 gives a complete overview of all elements defined in the metamodel and specified in Specification
(normative). The UML packages reflect the structure of Designators. The elements of package "Core" are specified as
first class citizens in Core Classes, except for their imported packages: the elements of package "SubmodelElements"
are specified in Submodel Element Types. Elements of package "Common" are specified in Common Attributes. The
elements of package "Referencing" are specified in Referencing. Elements from package "Types" are specified in Data
Types. Elements from package "Environment" are specified in Environment. Elements from package
"ConceptDescriptions" are specified in Concept Descriptions. The only package that is not listed is "Data
Specifications (Templates)" because data specifications are handled differently. Data specification templates are
explained in Data Specifications. Packages with Suffix "Entities" contain elements that are data types of attributes in
other classes.

17

AAS_Metamodel

 + Common
 + Core

 + Referencing
 + Environment

 + Types
 + ConceptDescriptions
 + Data Specifications

(Templates)

Common

+ AdministrativeInformation
+ HasDataSpecification

+ HasExtensions
+ HasKind

+ HasSemantics
+ Identifiable
+ Qualifiable
+ Referable

 + CommonEntities

CommonEntities

+ Extension
+ Qualifier

Core

+ AssetAdministrationShell
+ AssetInformation

+ Submodel
+ SubmodelElement
 + SubmodelElements

 + CoreEntities

CoreEntities

+ AssetKind
+ ModellingKind
+ QualifierKind

+ SpecificAssetId

SubmodelElements

+
AnnotatedRelationshipElement

+ BasicEventElement
+ Blob

+ Capability
+ DataElement

+ Entity
+ EventElement

+ File
+ MultiLanguageProperty

+ Operation
+ Property
+ Range

+ ReferenceElement
+ RelationshipElement

+
SubmodelElementCollection

+ SubmodelElementList
 +

SubmodelElementEntities

SubmodelElementEntities

+ EntityType
+ EventPayload

+ OperationVariable
+ Direction

+ StateOfEvent

ConceptDescriptions

+ ConceptDescription

Environment

+ Environment

Referencing

+ Key
+ Reference

 +

ReferencingEnumerations
 +

ReferencingLogicalEnumerations

Types

 +
CommonMetamodelTypes
 + BasicAndPrimitiveTypes

CommonMetamodelTypes

 + SimpleTypes
 + ExtendedTypes

SimpleTypes

+ base64Binary
+ boolean

+ dateTime
+ duration

+ string

ExtendedTypes

+ langString

BasicAndPrimitiveTypes

+ BlobType
+ ContentType

+ Identifier
+ KeyType

+ LabelType
+ LangStringSet

+ MessageTopicType
+ MultiLanguageNameType
+ MultiLanguageTextType

+ NameType
+ PathType

+ QualifierType
+ RangeType
+ Resource

+ RevisionType
+ ValueDataType

+ VersionType
 +

DataTypeDefXsdEnumeration
 +

DataTypeDefRdfEnumeration
 + Enumerations

DataTypeDefRdfEnumeration

+ DataTypeDefRdf

DataTypeDefXsdEnumeration

+ DataTypeDefXsd

ReferencingEnumerations

+ KeyTypes
+ ReferenceTypes

ReferencingLogicalEnumerations

+ AasIdentifiables
+

AasReferableNonIdentifiables
+ AasReferables

+ AasSubmodelElements
+ FragmentKeys

+ GenericFragmentKeys
+

GenericGloballyIdentifiables
+ GloballyIdentifiables

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

< impor t>

Figure 4. Metamodel Package Overview

Figure 5 shows the so-called environment. The environment’s purpose is to list all Asset Administration Shells, all
submodels, and all concept descriptions – in other word, all identifiables within an ecosystem.

18

Environment

+assetAdministrationShell:
AssetAdministrationShell[0..*]
+submodel: Submodel[0..*]
+conceptDescription:
ConceptDescription[0..*]

AssetAdministrationShell
Identif iable

HasDataSpecification

+derivedFrom:
Reference[0..1]
+assetInformation:
AssetInformation
+submodel: Reference[0..*]

Submodel

Identif iable
HasKind

HasSemantics
Qualifiable

HasDataSpecification

+submodelElement:
SubmodelElement[0..*]

ConceptDescription
Identif iable

HasDataSpecification

+isCaseOf: Reference[0..*]

Reference

submodel
0..*

Reference

derivedFrom
0..1

Figure 5. Metamodel of Environment

Designators

This clause specifies the classes of the metamodel in detail. An overview is provided in Overview. Annex UML
explains UML modelling together with the specifics used in this specification. Annex D depicts the templates used to
describe the classes and relationships. Annex G shows some of the diagrams together with all their inherited attributes
to give a complete overview.

To understand the specifications, it is crucial to understand the common attributes first (Common Attributes). They are
reused throughout the specifications of the other classes ("inherits from") and define important concepts like
identifiable, qualifiable, etc. They are abstract, i.e. there is no object instance of such classes.

The concept of referencing and how a reference is represented in the UML diagrams and the tables is explained in
Referencing and Annex UML.

Constraints that are no invariants of classes are specified in Constraints.

Common Attributes

General

This clause specifies the abstract classes that represent commonly used attributes and terminology, together with the
classes and data types exclusively used in these classes. They are represented in alphabetical order.

19

Administrative Information Attributes

AdministrativeInformation
HasDataSpecification

+version: VersionType[0..1]
+revision:
RevisionType[0..1]
+creator : Reference[0..1]
+templateId: Identifier[0..1]

Figure 6. Metamodel of Administrative Information

Every identifiable may contain administrative information. Administrative information includes, for example,

• information about the version of the element,

• information about who created or who made the last change to the element,

• information about the languages available in case the element contains text; the master or default language may
also be defined for translating purposes,

• information about the submodel template that guides the creation of the submodel

In principle, the version corresponds to the version_identifier according to IEC 62832. However, it is not used for
concept identifiers only (IEC TS 62832-1), but for all identifiable elements. Together, version and revision correspond
to the version number according to IEC 62832.

Other attributes of the administrative information like creator refer to ISO 15836-1:2017, the Dublin Core metadata
element set.

For more information on the concept of subject, see Attribute Based Access Control (ABAC) [49]. The assumption is
that every subject has a unique identifier.

AdministrativeInformation allows the usage of templates (HasDataSpecification). Data specifications are defined in
separate documents.

If an AAS contains two different Submodels with the same semanticId (Submodel/semanticId) these two submodels
shall have different IDs (Submodel/id) and differ in either their a) version (Submodel/administration/version) (revision is
ignored) or b) their creator (Submodel/administration/creator). With a) both submodels shall have version information.
With b) both submodels shall have a creator.

Note 1: typically, some of the administrative information like the version number might be part of the identification
(Submodel/id). This is similar to the handling of identifiers for concept descriptions using IRDIs. In ECLASS, the
IRDI 0173-1#02-AO677#002 contains the version information 002.

Note 2: since submodels with different versions shall have different identifiers, it is possible that an Asset
Administration Shell has two submodels with the same semanticId but different versions.

If an AAS contains two different Submodels guided by the same Submodel Template (SMT), i.e. have the same
templateId value (Submodel/administration/templateId), then the two submodels shall have different IDs (
Submodel/id). In this case both Submodels shall have a templateId assigned to them
(Submodel/administration/templateId).

Note 3: In some cases there is neither a semanticId (Submodel/semanticId) nor a template ID
(Submodel/administration/templateId) defined for the Submodel. In this case there is no way for the data

20

consumer to formally see whether two Submodels are providing the same semantic information.

Note 4: If a template ID of one of the standardized Submodel Templates of the IDTA is used to guide the creation
of a Submodel then there is also a semantic ID defined for the Submodel.

Class: AdministrativeInformation

Explanation: Administrative metainformation for an element like version information

Constraint AASd-005: If AdministrativeInformation/version is not specified,
AdministrativeInformation/revision shall also be unspecified. This means that a
revision requires a version. If there is no version, there is no revision. Revision is
optional.

Inherits from: HasDataSpecification

ID: https://admin-shell.io/aas/3/1/AdministrativeInformation

Attribute ID

Explanation Type Card.

version https://admin-shell.io/aas/3/1/AdministrativeInformation/version

Version of the element VersionType 0..1

revision https://admin-shell.io/aas/3/1/AdministrativeInformation/revision

Revision of the element RevisionType 0..1

creator https://admin-shell.io/aas/3/1/AdministrativeInformation/creator

The subject ID of the subject responsible for
making the element

Reference 0..1

21

templateId https://admin-shell.io/aas/3/1/AdministrativeInformation/templateId

Identifier of the template that guided the
creation of the element

Note 1: in case of a submodel, the
template ID is the identifier of the
submodel template that guided the
creation of the submodel.

Note 2: the submodel template ID is
not relevant for validation. Here, the
Submodel/semanticId shall be used.

Note 3: usage of the template ID is not
restricted to submodel instances. The
creation of submodel templates can
also be guided by another submodel
template.

Identifier 0..1

Has Data Specification Attributes

«abstract»
HasDataSpecification

+dataSpecification:
Reference[0..*]

Figure 7. Metamodel of HasDataSpecification

Class: HasDataSpecification <<abstract>>

Explanation: Element that can be extended by using data specification templates. A data
specification template defines a named set of additional attributes an element may or
shall have. The data specifications used are explicitly specified with their global ID.

Inherits from: —

ID: https://admin-shell.io/aas/3/1/HasDataSpecification

Attribute ID

Explanation Type Card.

22

dataSpecification https://admin-shell.io/aas/3/1/HasDataSpecification/dataSpecification

External reference to the data specification
template used by the element

Note: this is an external reference.

Reference 0..*

For more details on data specifications, please see Data Specifications.

Has Extensions Attributes

«abstract»
HasExtensions

+extension: Extension[0..*]

«abstract»
Referable

HasExtensions

+category: NameType[0..1]
«Deprecated»
+idShor t: NameType[0..1]
+displayName:
MultiLanguageNameType[0..1]
+description:
MultiLanguageTextType[0..1]

Extension
HasSemantics

+name: NameType
+valueType:
DataTypeDefXsd[0..1]
+value: ValueDataType[0..1]
+refersTo: Reference[0..*]

Reference

+refersTo

Figure 8. Metamodel of Has Extensions

Class: HasExtensions <<abstract>>

Explanation: Element that can be extended by proprietary extensions

Note 1: see Constraints for Extensions for constraints related to extensions.

Note 2: extensions are proprietary, i.e. they do not support global interoperability.

Inherits from: —

ID: https://admin-shell.io/aas/3/1/HasExtensions

Attribute ID

Explanation Type Card.

extension https://admin-shell.io/aas/3/1/HasExtensions/extension

An extension of the element. Extension 0..*

23

Class: Extension

Explanation: Single extension of an element

Inherits from: HasSemantics

ID: https://admin-shell.io/aas/3/1/Extension

Attribute ID

Explanation Type Card.

name https://admin-shell.io/aas/3/1/Extension

Name of the extension NameType 1

valueType https://admin-shell.io/aas/3/1/Extension/valueType

Data type of the value attribute of the
extension

Default: xs:string

DataTypeDefXsd 0..1

value https://admin-shell.io/aas/3/1/Extension/value

Value of the extension ValueDataType 0..1

refersTo https://admin-shell.io/aas/3/1/Extension/refersTo

Reference to an element the extension
refers to

ModelReference<Referabl
e>

0..*

Has Kind Attributes

«abstract»
HasKind

+kind: ModellingKind[0..1]

«enumeration»
ModellingKind

Template
Instance

Figure 9. Metamodel of HasKind

Class: HasKind

Explanation: An element with a kind is an element that can either represent a template or an
instance.

Default for an element is that it is representing an instance.

Inherits from: —

ID: https://admin-shell.io/aas/3/1/HasKind

24

Attribute ID

Explanation Type Card.

kind https://admin-shell.io/aas/3/1/HasKind/kind

Kind of the element: either template or
instance

Default Value = Instance

ModellingKind 0..1

The kind enumeration is used to denote whether an element is of kind Template or Instance. It is used to distinguish
between submodels and submodel templates.

Enumeration: ModellingKind

Explanation: Enumeration for denoting whether an element is a template or an instance

Set of: —

ID: https://admin-shell.io/aas/3/1/ModellingKind

Literal ID

Explanation

Template https://admin-shell.io/aas/3/1/ModellingKind/Template

specification of the common features of a structured element in sufficient detail
that such an instance can be instantiated using it

Instance https://admin-shell.io/aas/3/1/ModellingKind/Instance

concrete, clearly identifiable element instance. Its creation and validation may
be guided by a corresponding element template

Has Semantics Attributes

«abstract»
HasSemantics

+semanticId:
Reference[0..1]
+supplementalSemanticId:
Reference[0..*]

Figure 10. Metamodel of Semantic References (HasSemantics)

For matching algorithm, see Matching Strategies for Semantic Identifiers.

Class: HasSemantics <<abstract>>

25

Explanation: Element that can have a semantic definition plus some supplemental semantic
definitions

Constraint AASd-118: If a supplemental semantic ID
(HasSemantics/supplementalSemanticId) is defined, there shall also be a main
semantic ID (HasSemantics/semanticId).

Inherits from: —

ID: https://admin-shell.io/aas/3/1/HasSemantics

Attribute ID

Explanation Type Card.

semanticId https://admin-shell.io/aas/3/1/HasSemantics/semanticId

Identifier of the semantic definition of the
element called semantic ID or also main
semantic ID of the element

Reference 0..1

supplementalSemanticId https://admin-shell.io/aas/3/1/HasSemantics/supplementalId

Identifier of a supplemental semantic
definition of the element called supplemental
semantic ID of the element

Reference 0..*

Identifiable Attributes

«abstract»
Referable

HasExtensions

+category: NameType[0..1]
«Deprecated»
+idShor t: NameType[0..1]
+displayName:
MultiLanguageNameType[0..1]
+description:
MultiLanguageTextType[0..1]

«abstract»
Identifiable

+administration:
AdministrativeInformation[0..1]
+ id: Identifier

AdministrativeInformation
HasDataSpecification

+version: VersionType[0..1]
+revision:
RevisionType[0..1]
+creator : Reference[0..1]
+templateId: Identifier[0..1]

Figure 11. Metamodel of Identifiables

An identifiable element is a referable with a globally unique identifier (Identifier). Only the global ID (Identifiable/id)
shall be used to reference an identifiable, because the idShort is not unique for an identifiable. Identifiables may have
administrative information like version, etc.

Non-identifiable referable elements can be referenced. However, this requires the context of the element. A referable

26

that is not identifiable and not child within a SubmodelElementList has a short identifier (idShort) that is unique just in
its context, its name space.

Information about identification can be found in Identification of Elements. See Which Identifiers for Which Elements?
for constraints and recommendations on when to use which type of identifier.

See Which Identifiers for Which Elements? for information about which identifier types are supported.

Class: Identifiable <<abstract>>

Explanation: An element that has a globally unique identifier

Note: see for constraints related to identifiables.

Inherits from: Referable

ID: https://admin-shell.io/aas/3/1/Identifiable

Attribute ID

Explanation Type Card.

administration https://admin-shell.io/aas/3/1/Identifiable/administration

Administrative information of an identifiable
element

Note: some of the administrative
information like the version number
might need to be part of the
identification.

AdministrativeInformation 0..1

id https://admin-shell.io/aas/3/1/Identifiable/id

The globally unique identification of the
element

Identifier 1

Qualifiable Attributes

«abstract»
Qualifiable

+qualifier: Qualifier[0..*]

Qualifier
HasSemantics

+kind: QualifierKind[0..1]
«Experimental»
+type: QualifierType
+valueType:
DataTypeDefXsd
+value: ValueDataType[0..1]
+valueId: Reference[0..1]

Figure 12. Metamodel of Qualifiables

Class: Qualifiable <<abstract>>

27

Explanation: A qualifiable element may be further qualified by one or more qualifiers.

Note: see Constraints for Qualifiers for constraints related to qualifiables.

Inherits from: —

ID: https://admin-shell.io/aas/3/1/Qualifiable

Attribute ID

Explanation Type Card.

qualifier https://admin-shell.io/aas/3/1/Qualifiable/qualifier

Additional qualification of a qualifiable
element

Qualifier 0..*

Qualifier Attributes

Qualifier
HasSemantics

+kind: QualifierKind[0..1]
«Experimental»
+type: QualifierType
+valueType:
DataTypeDefXsd
+value: ValueDataType[0..1]
+valueId: Reference[0..1]

«enumeration»
QualifierKind

ValueQualifier
ConceptQualifier
TemplateQualifier

Figure 13. Metamodel of Qualifiers

Qualifiers may be defined for qualifiable elements.

There are standardized qualifiers defined in IEC CDD, IEC61360-4 – IEC/SC 3D. A level qualifier defining the level
type minimal, maximal, typical, and nominal value is specified in IEC 62569-1. In DIN SPEC 92000, qualifier types like
e.g. expression semantics and expression logic are defined.

Class: Qualifier

Explanation: A qualifier is essentially a type-value-pair. Depending on the kind of qualifier, it makes
additional statements

• w.r.t. the value of the qualified element,

• w.r.t the concept, i.e. semantic definition of the qualified element,

• w.r.t. existence and other meta information of the qualified element type.

Constraint AASd-006: If both, the _value_ and the _valueId_ of a Qualifier are
present, the value shall be identical to the value of the referenced coded value in
Qualifier/valueId.

Constraint AASd-020: The value of Qualifier/value shall be consistent with the data
type as defined in Qualifier/valueType.

28

Inherits from: HasSemantics

ID: https://admin-shell.io/aas/3/1/Qualifier

Attribute ID

Explanation Type Card.

kind <<Experimental>> https://admin-shell.io/aas/3/1/Qualifier/kind

The qualifier kind describes the kind of
qualifier that is applied to the element.

Default: ConceptQualifier

QualifierKind 0..1

type https://admin-shell.io/aas/3/1/Qualifier/type

The qualifier type describes the type of
qualifier that is applied to the element.

QualifierType 1

valueType https://admin-shell.io/aas/3/1/Qualifier/valueType

Data type of the qualifier value DataTypeDefXsd 1

value https://admin-shell.io/aas/3/1/Qualifier/value

The qualifier value is the value of the
qualifier.

ValueDataType 0..1

valueId https://admin-shell.io/aas/3/1/Qualifier/valueId

Reference to the global unique ID of a
coded value

Reference 0..1

It is recommended to add a semanticId for the concept of the Qualifier. Qualifier/type is the preferred name of the
concept of the qualifier or its short name.

Enumeration: QualifierKind

Explanation: Enumeration for kinds of qualifiers

Set of: —

ID: https://admin-shell.io/aas/3/1/QualifierKind

Literal ID

Explanation

ValueQualifier https://admin-shell.io/aas/3/1/QualifierKind/ValueQualifier

Qualifies the value of the element; the corresponding qualifier value can change
over time.

Value qualifiers are only applicable to elements with kind="Instance".

29

ConceptQualifier https://admin-shell.io/aas/3/1/QualifierKind/ConceptQualifier

Qualifies the semantic definition (HasSemantics/semanticId) the element is
referring to; the corresponding qualifier value is static.

TemplateQualifier https://admin-shell.io/aas/3/1/QualifierKind/TemplateQualifier

Qualifies the elements within a specific submodel on concept level; the
corresponding qualifier value is static.

Note: template qualifiers are only applicable to elements with
kind="Template". See constraint AASd-129.

Example of a ValueQualifier: property "temperature" and qualifier "value quality" with different qualifier values like
"measured", "substitute value".

Example of a ConceptQualifier: an Asset Administration Shell with two submodels with different IDs but the same
semanticId = "Bill of Material". The qualifier could denote the life cycle with qualifier values like "as planned", "as
maintained" etc. (see Figure 14).

Example of a TemplateQualifier: a submodel element with qualifier value "mandatory" or "optional". This
qualification is needed to build a correct submodel instance. For more information see [48].

Figure 14. Example: Qualifier from IEC CDD

Referable Attributes

«abstract»
Referable

HasExtensions

+category: NameType[0..1]
«Deprecated»
+idShor t: NameType[0..1]
+displayName:
MultiLanguageNameType[0..1]
+description:
MultiLanguageTextType[0..1]

Figure 15. Metamodel of Referables

The metamodel differentiates between elements that are identifiable, referable, or none of both. The latter means they
are neither inheriting from Referable nor from Identifiable, which applies e.g. to Qualifiers.

Referable elements can be referenced via the idShort (except for elements within a SubmodelElementList). For details

30

on referencing, see Referencing.

Not every element of the metamodel is referable. There are elements that are just attributes of a referable.

The idShort shall be unique in its name space for non-identifiable referables (exception: referables within a
SubmodelElementList) (see Constraint AASd-022). A name space is defined as follows in this context: the parent
element(s), which an element is part of and that is either referable or identifiable, is the name space of the element.
Examples: a submodel is the name space for the properties directly contained in it; the name space of a submodel
element contained in a submodel element collection is the submodel element collection.

Class: Referable <<abstract>>

Explanation: Element that is referable by its idShort.

Note 1: this ID is not globally unique. This ID is unique within the name space of
the element.

Note 2: see Constraints for Referables and Identifiables for constraints related to
referables.

Constraint AASd-002: idShort of Referables shall only feature letters, digits, hyphen
("-") and underscore ("_"); starting mandatory with a letter, and not ending with a
hyphen, i.e. ^[a-zA-Z][a-zA-Z0-9_-]*[a-zA-Z0-9_]+$.

Inherits from: HasExtensions

ID: https://admin-shell.io/aas/3/1/Referable

Attribute ID

Explanation Type Card.

category <<Deprecated>> https://admin-shell.io/aas/3/1/Referable/category

The category is a value that gives further
meta information w.r.t. the class of the
element. It affects the expected existence of
attributes and the applicability of constraints.

Note: The category is not identical to
the semantic definition (
HasSemantics) of an element. The
category could e.g. denote that the
element is a measurement value,
whereas the semantic definition of the
element would denote that it is the
measured temperature.

NameType 0..1

31

idShort https://admin-shell.io/aas/3/1/Referable/idShort

In case of identifiables, this attribute is a
short name of the element. In case of a
referable, this ID is an identifying string of
the element within its name space.

Note: if the element is a property and
the property has a semantic definition
(HasSemantics/semanticId)
conformant to IEC61360, the idShort is
typically identical to the short name in
English, if available.

NameType 0..1

displayName https://admin-shell.io/aas/3/1/Referable/displayName

Display name; can be provided in several
languages

MultiLanguageNameType 0..1

description https://admin-shell.io/aas/3/1/Referable/description

Description or comments on the element

The description can be provided in several
languages.

If no description is defined, the definition of
the concept description that defines the
semantics of the element is used.

Additional information can be provided, e.g.
if the element is qualified and which qualifier
types can be expected in which context or
which additional data specification
templates.

MultiLanguageTextType 0..1

Predefined categories are described in Table 2.

Note: categories are deprecated and should no longer be used.

Table 2. Categories[3] for Elements with Value

Category: Applicable to, Examples: Explanation:

CONSTANT Property

ReferenceElement

An element with the category CONSTANT is an element with
a value that does not change over time.

In ECLASS, this kind of category has the category "Coded
Value".

32

Category: Applicable to, Examples: Explanation:

PARAMETER Property

MultiLanguageProperty

Range

SubmodelElementCollection

An element with the category PARAMETER is an element
that is once set and then typically does not change over time.

This applies e.g. to configuration parameters.

VARIABLE Property

SubmodelElementList

An element with the category VARIABLE is an element that
is calculated during runtime, i.e. its value is a runtime value.

Core Classes

Asset Administration Shell Attributes

AssetAdministrationShell
Identif iable

HasDataSpecification

+derivedFrom:
Reference[0..1]
+assetInformation:
AssetInformation
+submodel: Reference[0..*]

AssetInformation

+assetKind: AssetKind
+globalAssetId:
Identifier[0..1]
+specificAssetId:
SpecificAssetId[0..*]
+assetType: Identifier[0..1]
+defaultThumbnail:
Resource[0..1]

Submodel

Identif iable
HasKind

HasSemantics
Qualifiable

HasDataSpecification

+submodelElement:
SubmodelElement[0..*]

Reference

+submodel 0. .*

Reference

+der ivedFrom 0..1

Figure 16. Metamodel of an AssetAdministrationShell

An Administration Shell is uniquely identifiable since it inherits from Identifiable.

The derivedFrom attribute is used to establish a relationship between two Asset Administration Shells that are derived
from each other. For more detailed information on the derivedFrom concept, see Types and Instances.

Class: AssetAdministrationShell

Explanation: An Asset Administration Shell

Inherits from: Identifiable; HasDataSpecification

ID: https://admin-shell.io/aas/3/1/AssetAdministrationShell

33

Attribute ID

Explanation Type Card.

derivedFrom https://admin-shell.io/aas/3/1/AssetAdministrationShell/derivedFrom

The reference to the Asset Administration
Shell, which the Asset Administration Shell
was derived from

ModelReference<AssetAd
ministrationShell>

0..1

assetInformation https://admin-shell.io/aas/3/1/AssetAdministrationShell/assetInformation

Meta information about the asset, the Asset
Administration Shell is representing

AssetInformation 1

submodel https://admin-shell.io/aas/3/1/AssetAdministrationShell/submodel

Reference to a submodel of the Asset
Administration Shell

A submodel is a description of an aspect of
the asset, the Asset Administration Shell is
representing.

The asset of an Asset Administration Shell
is typically described by one or more
submodels.

Temporarily, no submodel might be
assigned to the Asset Administration Shell.

ModelReference<Submod
el>

0..*

Asset Information Attributes

AssetInformation

+assetKind: AssetKind
+globalAssetId:
Identifier[0..1]
+specificAssetId:
SpecificAssetId[0..*]
+assetType: Identifier[0..1]
+defaultThumbnail:
Resource[0..1]

SpecificAssetId
HasSemantics

+name: LabelType
+value: Identifier
+externalSubjectId:
Reference[0..1]

Resource

+path: PathType
+contentType:
ContentType[0..1]

«enumeration»
AssetKind

Type
Instance
Role
NotApplicable

Figure 17. Metamodel of Asset Information

Class: AssetInformation

34

Explanation: In AssetInformation, identifying metadata of the asset that is represented by an Asset
Administration Shell is defined.

The asset may either represent a type asset or an instance asset.

The asset has a globally unique identifier, plus – if needed – additional domain-
specific (proprietary) identifiers. However, to support the corner case of very first
phase of life cycle where a stabilized/constant global asset identifier does not already
exist, the corresponding attribute "globalAssetId" is optional.

Constraint AASd-131: The globalAssetId or at least one specificAssetId shall be
defined for AssetInformation.

Note: see Constraints for Asset-Related Information for constraints related to
asset information.

Inherits from: —

ID: https://admin-shell.io/aas/3/1/AssetInformation

Attribute ID

Explanation Type Card.

assetKind https://admin-shell.io/aas/3/1/AssetInformation/assetKind

Denotes whether the asset is of kind "Type",
Instance", "Role" or none of these types is
applicable

AssetKind 1

globalAssetId https://admin-shell.io/aas/3/1/AssetInformation/globalAssetId

Identifier of the asset, the Asset
Administration Shell is representing

This attribute is required as soon as the
Asset Administration Shell is exchanged via
partners in the life cycle of the asset. In a
first phase of the life cycle, the asset might
not yet have a global asset ID but already an
internal identifier. The internal identifier
would be modelled via "specificAssetId".

Identifier 0..1

specificAssetId https://admin-shell.io/aas/3/1/AssetInformation/specificAssetId

Additional domain-specific, typically
proprietary identifier for the asset like serial
number, manufacturer part ID, customer part
IDs, etc

SpecificAssetId 0..*

35

assetType https://admin-shell.io/aas/3/1/AssetInformation/assetType

In case AssetInformation/assetKind is not
NotApplicable the
AssetInformation/assetType is the asset ID
of the type asset of the asset under
consideration as identified by
AssetInformation/globalAssetId.

Note: in case
AssetInformation/assetKind is Instance
then the AssetInformation/assetType
denotes which Type the asset is of. But
it is also possible to have an
AssetInformation/assetType of an
asset of kind Type.

Identifier 0..1

defaultThumbnail https://admin-shell.io/aas/3/1/AssetInformation/defaultThumbnail

Thumbnail of the asset represented by the
Asset Administration Shell; used as default.

Resource 0..1

Note: besides this asset information, there still might be an identification submodel with further information.
Specific asset IDs mainly serve the purpose of supporting discovery of Asset Administration Shells for an asset.

Resource Attributes

Class: Resource

Explanation: Resource represents an address to a file (a locator). The value is a URI that can
represent an absolute or relative path.

Inherits from: —

ID: https://admin-shell.io/aas/3/1/Resource

Attribute ID

Explanation Type Card.

path https://admin-shell.io/aas/3/1/Resource/path

Path and name of the resource (with file
extension)

The path can be absolute or relative.

PathType 1

36

contentType https://admin-shell.io/aas/3/1/Resource/contentType

Content type of the content of the file

The content type states which file
extensions the file can have.

ContentType 0..1

Asset Kind Attributes

Enumeration: AssetKind

Explanation: Enumeration for denoting whether an asset is a type asset or an instance asset
or is a role or whether this kind of classification is not applicable

Set of: —

ID: https://admin-shell.io/aas/3/1/AssetKind

Literal ID

Explanation

Type https://admin-shell.io/aas/3/1/AssetKind/Type

Type asset

Instance https://admin-shell.io/aas/3/1/AssetKind/Instance

Instance asset

Role https://admin-shell.io/aas/3/1/AssetKind/Role

Role asset

NotApplicable https://admin-shell.io/aas/3/1/AssetKind/NotApplicable

Neither a type asset nor an instance asset nor a role asset

For more information on types and instances, see Types and Instances.

Specific Asset ID Attributes

Class: SpecificAssetId

Explanation: A specific asset ID describes a generic supplementary identifying attribute of the
asset. The specific asset ID is not necessarily globally unique.

Constraint AASd-133: SpecificAssetId/externalSubjectId shall be a global reference,
i.e. Reference/type = ExternalReference.

Inherits from: HasSemantics

ID: https://admin-shell.io/aas/3/1/SpecificAssetId

37

Attribute ID

Explanation Type Card.

name https://admin-shell.io/aas/3/1/SpecificAssetId/name

Name of the asset identifier LabelType 1

value https://admin-shell.io/aas/3/1/SpecificAssetId/value

The value of the specific asset identifier with
the corresponding name

Identifier 1

externalSubjectId https://admin-shell.io/aas/3/1/SpecificAssetId/externalSubjectId

The unique ID of the (external) subject the
specific asset ID value belongs to or has
meaning to

Note: this is an external reference.

Reference 0..1

Note 1: names for specificAssetIds do not need to be unique.

Note 2: semanticIds for the single specificAssetIds do not need to be unique.

For more information on the concept of subject, see Attribute Based Access Control (ABAC) [49]. The assumption is
that every subject has a unique identifier.

Submodel Attributes

Submodel

Identif iable
HasKind

HasSemantics
Qualifiable

HasDataSpecification

+submodelElement:
SubmodelElement[0..*]

«abstract»
SubmodelElement

Referable
HasSemantics

Qualifiable
HasDataSpecification

Figure 18. Metamodel of Submodel

Adding a semanticId for a submodel is recommended (see Table "Elements with Allowed Identifying Values").

If the submodel is of kind=Template (modelling kind as inherited by HasKind), the submodel elements within the
submodel are presenting submodel element templates. If the submodel is of kind=Instance, its submodel elements
represent submodel element instances.

Note: validators shall handle a submodel like SubmodelElementCollection/submodelElements and not like a
SubmodelElementList/value. The difference is that a submodel is identifiable and a predefined unit of information
within the Asset Administration Shell.

38

Class: Submodel

Explanation: A submodel defines a specific aspect of the asset represented by the Asset
Administration Shell.

A submodel is used to structure the digital representation and technical functionality
of an Administration Shell into distinguishable parts. Each submodel refers to a well-
defined domain or subject. Submodels can become standardized and, in turn,
submodel templates.

Inherits from: Identifiable; HasKind; HasSemantics; Qualifiable; HasDataSpecification

ID: https://admin-shell.io/aas/3/1/Submodel

Attribute ID

Explanation Type Card.

submodelElement https://admin-shell.io/aas/3/1/Submodel/submodelElement

A submodel consists of zero or more
submodel elements.

SubmodelElement 0..*

Submodel Element Attributes

«abstract»
SubmodelElement

Referable
HasSemantics

Qualifiable
HasDataSpecification

Figure 19. Metamodel of Submodel Element

Submodel elements are qualifiable elements, i.e. one or more qualifiers may be defined for each of them.

It is recommended to add a HasSemantics/semanticId to a SubmodelElement.

Submodel elements may also have defined data specification templates. A template might be defined to mirror some
of the attributes like preferredName and unit of a property concept definition if there is no corresponding concept
description available. Otherwise, there is only the property definition referenced by HasSemantics/semanticId available
for the property; the attributes must be looked up online in a different way and are not available offline.

Class: SubmodelElement <<abstract>>

Explanation: A submodel element is an element suitable for the description and differentiation of
assets.

Inherits from: Referable; HasSemantics; Qualifiable; HasDataSpecification

ID: https://admin-shell.io/aas/3/1/SubmodelElement

Attribute ID

Explanation Type Card.

39

Submodel Element Types

«abstract»
SubmodelElement

Referable
HasSemantics

Qualifiable
HasDataSpecification

RelationshipElement
SubmodelElement

+first: Reference[0..1]
+second: Reference[0..1]

AnnotatedRelationshipElement
RelationshipElement

+annotation:
DataElement[0..*]

«abstract»
DataElement

SubmodelElement

Property
DataElement

+valueType:
DataTypeDefXsd
+value: ValueDataType[0..1]
+valueId: Reference[0..1]

MultiLanguageProperty
DataElement

+value:
MultiLanguageTextType[0..1]
+valueId: Reference[0..1]

«Experimental»
Range

DataElement

+valueType:
DataTypeDefXsd
+min: ValueDataType[0..1]
+max: ValueDataType[0..1]

Blob
DataElement

+value: BlobType[0..1]
+contentType:
ContentType[0..1]

File
DataElement

+value: PathType[0..1]
+contentType:
ContentType[0..1]

ReferenceElement
DataElement

+value: Reference[0..1]

Capability
SubmodelElement

SubmodelElementList

+orderRelevant: bool[0..1] =
True
+semanticIdListElement:
Reference[0..1]
+typeValueListElement:
AasSubmodelElements
+valueTypeListElement:
DataTypeDefXsd[0..1]
+value:
SubmodelElement[0..*]

SubmodelElementCollection

+value:
SubmodelElement[0..*]

Entity

+statement:
SubmodelElement[0..*]
+entityType:
EntityType[0..1]
+globalAssetId:
Identifier[0..1]
+specificAssetId:
SpecificAssetId[0..*]

«abstract,Experimental»
EventElement

SubmodelElement

«Experimental»
BasicEventElement

EventElement

+observed: Reference
+direction: Direction
+state: StateOfEvent
+messageTopic:
MessageTopicType[0..1]
+messageBroker :
Reference[0..1]
+lastUpdate: dateTime[0..1]
+minInterval: duration[0..1]
+maxInterval: duration[0..1]

Operation
SubmodelElement

+inputVariable:
OperationVariable[0..*]
+outputVariable:
OperationVariable[0..*]
+inoutputVariable:
OperationVariable[0..*]

OperationVariable

+value: SubmodelElement

Figure 20. Metamodel Overview for Submodel Element Subtypes

Submodel elements include data properties as well as operations, events and other elements needed to describe a
model for an asset (see Figure 20).

General

All submodel elements including abstract classes like data elements are specified in alphabetical order.

Note: value-related attributes typically are optional to enable definition of Submodel Templates as well, i.e.
Submodels with value of Submodel/kind equal to Template.

Annotated Relationship Element Attributes

RelationshipElement
SubmodelElement

+first: Reference[0..1]
+second: Reference[0..1]

AnnotatedRelationshipElement
RelationshipElement

+annotation:
DataElement[0..*]

Figure 21. Metamodel of Annotated Relationship Elements

40

An annotated relationship is a relationship similar to a ternary association in UML. The semantics of the relationship is
defined via the semanticId of the RelationshipElement. If this semantic definition requires additional information not
contained in the first or second object referenced via the relationship, this information needs to be stored as
annotation.

Class: AnnotatedRelationshipElement

Explanation: An annotated relationship element is a relationship element that can be annotated
with additional data elements.

Inherits from: RelationshipElement

ID: https://admin-shell.io/aas/3/1/AnnotatedRelationshipElement

Attribute ID

Explanation Type Card.

annotation https://admin-shell.io/aas/3/1/AnnotatedRelationshipElement/annotation

A data element that represents an
annotation that holds for the relationship
between the two elements

DataElement 0..*

Basic Event Element Attributes

«Experimental»
BasicEventElement

EventElement

+observed: Reference
+direction: Direction
+state: StateOfEvent
+messageTopic:
MessageTopicType[0..1]
+messageBroker :
Reference[0..1]
+lastUpdate: dateTime[0..1]
+minInterval: duration[0..1]
+maxInterval: duration[0..1]

«enumeration»
Direction

input
output

«enumeration»
StateOfEvent

on
off

Figure 22. Metamodel of Basic Event Element

Class: BasicEventElement <<Experimental>>

Explanation: A basic event element

Inherits from: EventElement

41

ID: https://admin-shell.io/aas/3/1/BasicEventElement

Attribute ID

Explanation Type Card.

observed https://admin-shell.io/aas/3/1/BasicEventElement

Reference to a referable, e.g. a data
element or a submodel that is being
observed

ModelReference<Referabl
e>

1

direction https://admin-shell.io/aas/3/1/BasicEventElement/direction

Direction of event

Can be \{ input, output }

Direction 1

state https://admin-shell.io/aas/3/1/BasicEventElement/state

State of event

Can be { on, off }

StateOfEvent 1

messageTopic https://admin-shell.io/aas/3/1/BasicEventElement/messageTopic

Information for the outer message
infrastructure to schedule the event for the
respective communication channel.

MessageTopicType 0..1

messageBroker https://admin-shell.io/aas/3/1/BasicEventElement/messageBroker

Information about which outer message
infrastructure shall handle messages for the
EventElement; refers to a Submodel,
SubmodelElementList,
SubmodelElementCollection or Entity, which
contains DataElements describing the
proprietary specification for the message
broker

Note: this proprietary specification
could be standardized by using
respective submodels for different
message infrastructure, e.g. OPC UA,
MQTT or AMQP.

ModelReference<Referabl
e>

0..1

lastUpdate https://admin-shell.io/aas/3/1/BasicEventElement/lastUpdate

Timestamp in UTC, when the last event was
received (input direction) or sent (output
direction)

DateTimeUtc 0..1

42

minInterval https://admin-shell.io/aas/3/1/BasicEventElement/minInterval

For input direction reports on the maximum
frequency, the software entity behind the
respective referable can handle input
events.

For output events, the maximum frequency
of outputting this event to an outer
infrastructure is specified.

Might be not specified, i.e. if there is no
minimum interval.

duration 0..1

maxInterval https://admin-shell.io/aas/3/1/BasicEventElement/maxInterval

Not applicable for input direction

For output direction: maximum interval in
time, the respective referable shall send an
update of the status of the event, even if no
other trigger condition for the event was not
met.

Might not be specified, i.e. if there is no
maximum interval.

duration 0..1

Direction Enumeration

Enumeration: Direction <<Experimental>>

Explanation: Direction

Set of: —

ID: https://admin-shell.io/aas/3/1/Direction

Literal ID

Explanation

input https://admin-shell.io/aas/3/1/Direction/input

Input direction

output https://admin-shell.io/aas/3/1/Direction/output

Output direction

State of Event Enumeration

Enumeration: StateOfEvent <<Experimental>>

Explanation: State of an event

43

Set of: —

ID: https://admin-shell.io/aas/3/1/StateOfEvent

Literal ID

Explanation

on https://admin-shell.io/aas/3/1/StateOfEvent/on

Event is on

off https://admin-shell.io/aas/3/1/StateOfEvent/off

Event is off

Events sent or received by an Asset Administration Shell always comply with a general format. Exception: events
exchanged in the course of an Industry 4.0 interaction pattern.

Event Payload Attributes

The payload of such an event is specified below.

Note: the payload is not part of the information model as exchanged via the AASX package format but used in
re-active Asset Administration Shells.

«Experimental»
EventPayload

+source: Reference
+sourceSemanticId:
Reference[0..1]
+observableReference:
Reference
+observableSemanticId:
Reference[0..1]
+topic:
MessageTopicType[0..1]
+subjectId: Reference[0..1]
+timeStamp: dateTime
+payload: BlobType[0..1]

Figure 23. Metamodel of Event Payload

Class: EventPayload <<Experimental>>

Explanation: Defines the necessary information of an event instance sent out or received

Inherits from: -

ID: https://admin-shell.io/aas/3/1/EventPayload

44

Attribute ID

Explanation Type Card.

source https://admin-shell.io/aas/3/1/EventPayload/source

Reference to the source event element ModelReference<EventEle
ment>

1

sourceSemanticId https://admin-shell.io/aas/3/1/EventPayload/sourceSemanticId

semanticId of the source event element, if
available

Note: it is recommended to use an
external reference.

Reference 0..1

observableReference https://admin-shell.io/aas/3/1/EventPayload/observableReference

Reference to the referable, which defines
the scope of the event.

ModelReference<Referabl
e>

1

observableSemanticId https://admin-shell.io/aas/3/1/EventPayload/observableSemanticId

semanticId of the referable, which defines
the scope of the event, if available.

Note: it is recommended to use an
external reference.

Reference 0..1

topic https://admin-shell.io/aas/3/1/EventPayload/topic

Information for the outer message
infrastructure to schedule the event for the
respective communication channel

MessageTopicType 0..1

subjectId https://admin-shell.io/aas/3/1/EventPayload/subjectId

Subject, who/which initiated the creation

Note: this is an external reference.

Reference 0..1

timestamp https://admin-shell.io/aas/3/1/EventPayload/timestamp

Timestamp in UTC, when this event was
triggered

DateTimeUtc 1

payload https://admin-shell.io/aas/3/1/EventPayload/payload

Event-specific payload BlobType 0..1

45

For more information on the concept of subject, see Attribute Based Access Control (ABAC) [49]. The assumption is
that every subject has a unique identifier.

Blob Attributes

Blob
DataElement

+value: BlobType[0..1]
+contentType:
ContentType[0..1]

Figure 24. Metamodel of Blobs

For information on content type, see File Attributes.

Class: Blob

Explanation: A Blob is a data element representing a file that is contained in the value attribute with
its source code.

Inherits from: DataElement

ID: https://admin-shell.io/aas/3/1/Blob

Attribute ID

Explanation Type Card.

value https://admin-shell.io/aas/3/1/Blob/value

The value of the blob instance of a blob data
element

Note: in contrast to the file property,
the file content is stored directly as
value in the Blob data element.

BlobType 0..1

contentType https://admin-shell.io/aas/3/1/Blob/contentType

Content type of the content of the blob.

The content type (MIME type) states which
file extensions the file can have.

Valid values are content types like
"application/json", "application/xls",
"image/jpg".

The allowed values are defined as in
RFC2046.

ContentType 0..1

46

Capability Attributes

Capability
SubmodelElement

Figure 25. Metamodel of Capabilities

Note: the semanticId of a capability is typically an ontology, which enables reasoning on capabilities. For
information and examples on how to apply the concept of capability and how to map it to one or more skills
implementing the capability, please refer to [27]. The mapping is done via a relationship element with the
corresponding semantics. A skill is typically a property or an operation. In more complex cases, the mapping can
also be a collection or a complete submodel.

Class: Capability

Explanation: A capability is the implementation-independent description of the potential of an asset
to achieve a certain effect in the physical or virtual world.

Inherits from: SubmodelElement

ID: https://admin-shell.io/aas/3/1/Capability

Attribute ID

Explanation Type Card.

Data Element and Overview of Data Element Types

«abstract»
DataElement

SubmodelElement

Property
DataElement

+valueType:
DataTypeDefXsd
+value: ValueDataType[0..1]
+valueId: Reference[0..1]

MultiLanguageProperty
DataElement

+value:
MultiLanguageTextType[0..1]
+valueId: Reference[0..1]

«Experimental»
Range

DataElement

+valueType:
DataTypeDefXsd
+min: ValueDataType[0..1]
+max: ValueDataType[0..1]

Blob
DataElement

+value: BlobType[0..1]
+contentType:
ContentType[0..1]

File
DataElement

+value: PathType[0..1]
+contentType:
ContentType[0..1]

ReferenceElement
DataElement

+value: Reference[0..1]

Figure 26. Metamodel of Data Elements

A data element is a submodel element that is not further composed of other submodel elements.

A data element is a submodel element that has a value or a predefined number of values like range data elements.

The type of value differs for different subtypes of data elements. Data elements include properties, file handling, and
reference elements, see Figure 26.

Class: DataElement <<abstract>>

47

Explanation: A data element is a submodel element that is not further composed of other submodel
elements.

A data element is a submodel element that has a value. The type of value differs for
different subtypes of data elements.

{aasd090}

Note: categories are deprecated and should no longer be used.

Inherits from: SubmodelElement

ID: https://admin-shell.io/aas/3/1/DataElement

Attribute ID

Explanation Type Card.

Entity Attributes

Entity

+statement:
SubmodelElement[0..*]
+entityType:
EntityType[0..1]
+globalAssetId:
Identifier[0..1]
+specificAssetId:
SpecificAssetId[0..*]

«enumeration»
EntityType

CoManagedEntity
SelfManagedEntity

Figure 27. Metamodel of Entities

The entity submodel element is designed to be used in submodels defining the relationship between the parts of the
composite asset it is composed of (e.g. bill of material). These parts are called entities. Not all entities have a global
asset ID.

Class: Entity

Explanation: An entity is a submodel element that is used to model entities.

Constraint AASd-014: Either the attribute globalAssetId or specificAssetId of an
Entity must be set if Entity/entityType is set to "SelfManagedEntity".

Inherits from:

ID: https://admin-shell.io/aas/3/1/Entity

Attribute ID

Explanation Type Card.

48

statement https://admin-shell.io/aas/3/1/Entity/statement

Statement applicable to the entity, each
statement described by submodel element -
typically with a qualified value

SubmodelElement 0..*

entityType https://admin-shell.io/aas/3/1/Entity/entityType

Describes whether the entity is a co-
managed entity or a self-managed entity

EntityType 0..1

globalAssetId https://admin-shell.io/aas/3/1/Entity/globalAssetId

Global identifier of the asset the entity is
representing

Identifier 0..1

specificAssetId https://admin-shell.io/aas/3/1/Entity/specificAssetId

Reference to a specific asset ID
representing a supplementary identifier of
the asset represented by the Asset
Administration Shell

SpecificAssetId 0..*

Entity Type Enumeration

Enumeration: EntityType

Explanation: Enumeration for denoting whether an entity is a self-managed entity or a co-
managed entity

Set of: —

ID: https://admin-shell.io/aas/3/1/EntityType

Literal ID

Explanation

CoManagedEntity https://admin-shell.io/aas/3/1/EntityType/CoManagedEntity

There is no separate Asset Administration Shell for co-managed entities. Co-
managed entities need to be part of a self-managed entity.

SelfManagedEntity https://admin-shell.io/aas/3/1/EntityType/SelfManagedEntity

Self-managed entities have their own Asset Administration Shell but can be part
of another composite self-managed entity.

The asset represented by an Asset Administration Shell is a self-managed entity
per definition.

49

Event Element Attributes

«abstract,Experimental»
EventElement

SubmodelElement

Figure 28. Metamodel of Event Elements

Class: EventElement <<abstract>> <<Experimental>>

Explanation: An event element

Inherits from: SubmodelElement

ID: https://admin-shell.io/aas/3/1/EventElement

Attribute ID

Explanation Type Card.

File Attributes

File
DataElement

+value: PathType[0..1]
+contentType:
ContentType[0..1]

Figure 29. Metamodel of File Submodel Element

A media type (also MIME type and content type) is a two-part identifier for file formats and format contents transmitted
via the Internet. The Internet Assigned Numbers Authority (IANA) is the official authority for the standardization and
publication of these classifications.

Note: for information on handling supplementary external files in exchanging Asset Administration Shells in
AASX package format see also Part 5 of the series "Specification of the Asset Administration Shell". An absolute
path is used in case the file exists independently of the Asset Administration Shell. A relative path, relative to the
package root, should be used if the file is part of a serialized package of the Asset Administration Shell.

Class: File

Explanation: A file is a data element that represents an address to a file (a locator). The value is a
URI that can represent an absolute or relative path.

Inherits from: DataElement

ID: https://admin-shell.io/aas/3/1/File

Attribute ID

Explanation Type Card.

50

https://industrialdigitaltwin.org/en/content-hub/aasspecifications

value https://admin-shell.io/aas/3/1/File/value

Path and name of the file (with file
extension)

The path can be absolute or relative.

PathType 0..1

contentType https://admin-shell.io/aas/3/1/File/contentType

Content type of the content of the file ContentType 0..1

Multi Language Property Attributes

MultiLanguageProperty
DataElement

+value:
MultiLanguageTextType[0..1]
+valueId: Reference[0..1]

Figure 30. Metamodel of Multi Language Properties

Class: MultiLanguageProperty

Explanation: A property is a data element that has a multi-language value.

Constraint AASd-012: If both the MultiLanguageProperty/value and the
MultiLanguageProperty/valueId are present, the meaning must be the same for each
string in a specific language, as specified in MultiLanguageProperty/valueId.

Inherits from: DataElement

ID: https://admin-shell.io/aas/3/1/MultiLanguageProperty

Attribute ID

Explanation Type Card.

value https://admin-shell.io/aas/3/1/MultiLanguageProperty/value

The value of the property instance MultiLanguageTextType 0..1

valueId https://admin-shell.io/aas/3/1/MultiLanguageProperty/valueId

Reference to the global unique ID of a
coded value.

Reference 0..1

51

Operation Attributes

Operation
SubmodelElement

+inputVariable:
OperationVariable[0..*]
+outputVariable:
OperationVariable[0..*]
+inoutputVariable:
OperationVariable[0..*]

OperationVariable

+value: SubmodelElement

Figure 31. Metamodel of Operations

Class: Operation

Explanation: An operation is a submodel element with input and output variables.

Constraint AASd-134: For an Operation, the idShort of all inputVariable/value,
outputVariable/value, and inoutputVariable/value shall be unique.

Inherits from: SubmodelElement

ID: https://admin-shell.io/aas/3/1/Operation

Attribute ID

Explanation Type Card.

inputVariable https://admin-shell.io/aas/3/1/Operation/inputVariable

Input parameter of the operation OperationVariable 0..*

outputVariable https://admin-shell.io/aas/3/1/Operation/outputVariable

Output parameter of the operation OperationVariable 0..*

inoutputVariable https://admin-shell.io/aas/3/1/Operation/inoutputVariable

Parameter that is input and output of the
operation

OperationVariable 0..*

=== Note: In embedded systems inoutputVariables are variables that can be read but that are also written by the
system. Typically, this is implemented via a pointer (i.e. 'by reference' instead of 'by value')" ===

Operation Variable Attributes

Class: OperationVariable

Explanation: The value of an operation variable is a submodel element that is used as input and/or
output variable of an operation.

Inherits from: —

ID: https://admin-shell.io/aas/3/1/OperationVariable

52

Attribute ID

Explanation Type Card.

value https://admin-shell.io/aas/3/1/OperationVariable/value

Describes an argument or result of an
operation via a submodel element

SubmodelElement 1

Note 1: an operation can be invoked via an API call. For further explanation see Part 2 (IDTA-01002).

Note 2: OperationVariable is introduced as separate class to enable future extensions, e.g. for adding a default
value or cardinality (option/mandatory).

Note 3: even if the submodel element as the value of an input and an output variable have the same idShort, this
does not mean that they are identical or mapped to the same variable since OperationVariables are no
referables. The same applies to two input variables or an input variable and an inoutputVariable a.s.o.

Property Attributes

Property
DataElement

+valueType:
DataTypeDefXsd
+value: ValueDataType[0..1]
+valueId: Reference[0..1]

Figure 32. Metamodel of Properties

Class: Property

Explanation: A property is a data element that has a single value.

Constraint AASd-007: If both the Property/value and the Property/valueId are present,
the value of Property/value shall be identical to the value of the referenced coded
value in Property/valueId.

Inherits from: DataElement

ID: https://admin-shell.io/aas/3/1/Property

Attribute ID

Explanation Type Card.

valueType https://admin-shell.io/aas/3/1/Property/valueType

Data type of the value attribute DataTypeDefXsd 1

53

value https://admin-shell.io/aas/3/1/Property/value

The value of the property instance ValueDataType 0..1

valueId https://admin-shell.io/aas/3/1/Property/valueId

Reference to the global unique ID of a
coded value

Note: it is recommended to use an
external reference, compare to
HasSemantics/semanticId

Reference 0..1

Range Attributes

«Experimental»
Range

DataElement

+valueType:
DataTypeDefXsd
+min: ValueDataType[0..1]
+max: ValueDataType[0..1]

Figure 33. Metamodel of Ranges

Class: Range <<Experimental>>

Explanation: A range data element is a data element that defines a range with min and max.

Inherits from: DataElement

ID: https://admin-shell.io/aas/3/1/Range

Attribute ID

Explanation Type Card.

valueType https://admin-shell.io/aas/3/1/Range/valueType

Data type of the min und max attributes DataTypeDefXsd 1

min https://admin-shell.io/aas/3/1/Range/min

The minimum value of the range

If the min value is missing, the value is
assumed to be negative infinite.

ValueDataType 0..1

54

max https://admin-shell.io/aas/3/1/Range/max

The maximum value of the range

If the max value is missing, the value is
assumed to be positive infinite.

ValueDataType 0..1

Reference Element Attributes

ReferenceElement
DataElement

+value: Reference[0..1]

Figure 34. Metamodel of Reference Elements

Class: ReferenceElement

Explanation: A reference element is a data element that defines a logical reference to another
element within the same or another Asset Administration Shell or a reference to an
external object or entity.

Inherits from: DataElement

ID: https://admin-shell.io/aas/3/1/ReferenceElement

Attribute ID

Explanation Type Card.

value https://admin-shell.io/aas/3/1/ReferenceElement/value

External reference to an external object or
entity or a logical reference to another
element within the same or another Asset
Administration Shell (i.e. a model reference
to a Referable)

Reference 0..1

For more information on references, see Referencing.

Relationship Element Attributes

The semantics of the relationship is defined via the semanticId of the RelationshipElement. If this semantic definition
requires additional information not contained in the first or second object referenced via the relationship, the submodel
element type AnnotatedRelationshipElement shall be used instead.

RelationshipElement
SubmodelElement

+first: Reference[0..1]
+second: Reference[0..1]

Figure 35. Metamodel of Relationship Elements

Class: RelationshipElement

55

Explanation: A relationship element is used to define a relationship between two elements being
either referable (model reference) or external (external reference).

Inherits from: SubmodelElement

ID: https://admin-shell.io/aas/3/1/RelationshipElement

Attribute ID

Explanation Type Card.

first https://admin-shell.io/aas/3/1/RelationshipElement/first

Reference to the first element in the
relationship taking the role of the subject

Reference 0..1

second https://admin-shell.io/aas/3/1/RelationshipElement/second

Reference to the second element in the
relationship taking the role of the object

Reference 0..1

Submodel Element Collection Attributes

SubmodelElementCollection

+value:
SubmodelElement[0..*]

«abstract»
SubmodelElement

Referable
HasSemantics

Qualifiable
HasDataSpecification

Figure 36. Metamodel of Submodel Element Collections

Submodel Element Collections are used for complex elements with a typically fixed set of properties with unique
names. This set of properties is typically predefined by the semantic definition (referenced via semanticId) of the
submodel element collection. Each property within the collection itself should have clearly defined semantics.

Note: the different elements of a submodel element collection do not have to have different semanticIds.
However, in these cases the usage of a SubmodelElementList should be considered.

Example: a single document has a predefined set of properties like title, version, author, etc. They logically belong to a
document. So a single document is represented by a SubmodelElementCollection. An asset usually has many
different documents available like operating instructions, safety instructions, etc. The set of all documents is
represented by a SubmodelElementList. In this case, we have a SubmodelElementList of
SubmodelElementCollections.

Note: the elements within a submodel element collection are not ordered. Every element has a unique ID (its
"idShort"). However, it is recommended to adhere to the order defined in the submodel template.

56

Class: SubmodelElementCollection

Explanation: A submodel element collection is a kind of struct, i.e. a logical encapsulation of
multiple named values.

Inherits from:

ID: https://admin-shell.io/aas/3/1/SubmodelElementCollection

Attribute ID

Explanation Type Card.

value https://admin-shell.io/aas/3/1/SubmodelElementCollection/value

Submodel element contained in the
collection

SubmodelElement 0..*

Submodel Element List Attributes

SubmodelElementList

+orderRelevant: bool[0..1] =
True
+semanticIdListElement:
Reference[0..1]
+typeValueListElement:
AasSubmodelElements
+valueTypeListElement:
DataTypeDefXsd[0..1]
+value:
SubmodelElement[0..*]

«abstract»
SubmodelElement

Referable
HasSemantics

Qualifiable
HasDataSpecification

Figure 37. Metamodel of Submodel Element Lists

Submodel element lists are used for sets (i.e. unordered collections without duplicates), ordered lists (i.e. ordered
collections that may contain duplicates), bags (i.e. unordered collections that may contain duplicates), and ordered
sets (i.e. ordered collections without duplicates).

Submodel element lists are also used to create multidimensional arrays. A two-dimensional array list[3][5] with
Property values would be realized like follows: the first submodel element list would contain three
SubmodelElementList elements. Each of these three SubmodelElementList would contain 5 single Property elements.
The semanticId of the contained properties would be the same for all lists in the first list, i.e. semanticIdListElement
would be identical for all three lists contained in the first list. The semanticId of the three contained lists would differ
depending on the dimension it represents. In case of complex values in the array, a SubmodelElementCollection would
be used as values in the leaf lists.

Similarly, a table with three columns can be represented. In this case a SubmodelElementCollection with three
SubmodelElementLists would be contained and the semanticId as well as the semanticIdListElement for the three
columns would differ.

57

Matching strategies for semantic IDs are explained in Matching Strategies for Semantic Identifiers.

Class: SubmodelElementList

Explanation: A submodel element list is an ordered list of submodel elements.

Note: the list is ordered although the ordering might not be relevant (see
attribute "orderRelevant".)

The numbering starts with Zero (0).

Constraint AASd-107: If a first level child element in a SubmodelElementList has a
semanticId, it shall be identical to SubmodelElementList/semanticIdListElement.

Constraint AASd-114: If two first level child elements in a SubmodelElementList have
a semanticId, they shall be identical.

Constraint AASd-115: If a first level child element in a SubmodelElementList does not
specify a semanticId, the value is assumed to be identical to
SubmodelElementList/semanticIdListElement.

Constraint AASd-108: All first level child elements in a SubmodelElementList shall
have the same submodel element type as specified in
SubmodelElementList/typeValueListElement.

Constraint AASd-109: If _SubmodelElementList/typeValueListElement_ is equal to
AasSubmodelElements/Property or AasSubmodelElements/Range,
SubmodelElementList/valueTypeListElement shall be set and all first level child
elements in the SubmodelElementList shall have the value type as specified in
SubmodelElementList/valueTypeListElement.

Inherits from:

ID: https://admin-shell.io/aas/3/1/SubmodelElementList

Attribute ID

Explanation Type Card.

orderRelevant https://admin-shell.io/aas/3/1/SubmodelElementList/orderRelevant

Defines whether order in list is relevant. If
orderRelevant = false, the list represents a
set or a bag.

Default: True

boolean 0..1

value https://admin-shell.io/aas/3/1/SubmodelElementList/value

Submodel element contained in the list SubmodelElement 0..*

semanticIdListElement https://admin-shell.io/aas/3/1/SubmodelElementList/semanticIdListElement

Semantic ID which the submodel elements
contained in the list match

Reference 0..1

58

typeValueListElement https://admin-
shell.io/aas/3/1/SubmodelElementList/typeValueListElement/typeValueListElement

The submodel element type of the submodel
elements contained in the list

AasSubmodelElements 1

valueTypeListElement https://admin-shell.io/aas/3/1/SubmodelElementList/valueTypeListElement

The value type of the submodel element
contained in the list

DataTypeDefXsd 0..1

AasSubmodelElements Enumeration

«enumeration»
AasSubmodelElements

AnnotatedRelationshipElement
BasicEventElement
Blob
Capability
DataElement
Entity
EventElement
File
MultiLanguageProperty
Operation
Property
Range
ReferenceElement
RelationshipElement
SubmodelElement
SubmodelElementList
SubmodelElementCollection

Figure 38. Logical Enumeration AasSubmodelElements

Enumeration: AasSubmodelElements

Explanation: Enumeration of submodel element types including abstract submodel element
types

Set of: AasContainerSubmodelElements, AasNonContainerSubmodelElements

ID: https://admin-shell.io/aas/3/1/AasSubmodelElements

Literal ID

Explanation

AnnotatedRelationshipElement https://admin-
shell.io/aas/3/1/AasSubmodelElements/AnnotatedRelationshipElement

Annotated relationship element

59

BasicEventElement https://admin-shell.io/aas/3/1/AasSubmodelElements/BasicEventElement

Basic event element

Blob https://admin-shell.io/aas/3/1/AasSubmodelElements/Blob

Blob

Capability https://admin-shell.io/aas/3/1/AasSubmodelElements/Capability

Capability

DataElement https://admin-shell.io/aas/3/1/AasSubmodelElements/DataElement

Data Element

Note: data elements are abstract, i.e. if a key uses "DataElement", the
reference may be a property, file, etc.

Entity https://admin-shell.io/aas/3/1/AasSubmodelElements/Entity

Entity

EventElement https://admin-shell.io/aas/3/1/AasSubmodelElements/EventElement

Event

Note: event element is abstract.

File https://admin-shell.io/aas/3/1/AasSubmodelElements/File

File

MultiLanguageProperty https://admin-shell.io/aas/3/1/AasSubmodelElements/MultiLanguageProperty

Property with a value that can be provided in multiple languages

Operation https://admin-shell.io/aas/3/1/AasSubmodelElements/Operation

Operation

Property https://admin-shell.io/aas/3/1/AasSubmodelElements/Property

Property

Range https://admin-shell.io/aas/3/1/AasSubmodelElements/Range

Range with min and max

ReferenceElement https://admin-shell.io/aas/3/1/AasSubmodelElements/ReferenceElement

Reference

60

RelationshipElement https://admin-shell.io/aas/3/1/AasSubmodelElements/RelationshipElement

Relationship

SubmodelElement https://admin-shell.io/aas/3/1/AasSubmodelElements/SubmodelElement

Submodel element

Note: submodel elements are abstract, i.e. if a key uses
"SubmodelElement", the reference may be a property, a submodel
element list, an operation, etc.

SubmodelElementCollection https://admin-
shell.io/aas/3/1/AasSubmodelElements/SubmodelElementCollection

Struct of submodel elements

SubmodelElementList https://admin-shell.io/aas/3/1/AasSubmodelElements/SubmodelElementList

List of submodel elements

Concept Descriptions

ConceptDescription
Identif iable

HasDataSpecification

+isCaseOf: Reference[0..*]

Figure 39. Metamodel of Concept Descriptions

Class: ConceptDescription

Explanation: The semantics of a property or other elements that may have a semantic description
is defined by a concept description.

The description of the concept should follow a standardized schema (realized as data
specification template).

Inherits from: Identifiable; HasDataSpecification

ID: https://admin-shell.io/aas/3/1/ConceptDescription

Attribute ID

Explanation Type Card.

61

isCaseOf https://admin-shell.io/aas/3/1/ConceptDescription/isCaseOf

Reference to an external definition the
concept is compatible to or was derived
from

Note: compare with is-case-of
relationship in ISO 13584-32 ([26]) &
IEC EN 61360 ([25])

Reference 0..*

Different types of submodel elements require different attributes to describe their semantics. This is why a concept
description has at least one data specification template associated with it. This template defines the attributes needed
to describe the semantics.

See IDTA-01003 series for predefined data specification templates.

Environment

Environment

+assetAdministrationShell:
AssetAdministrationShell[0..*]
+submodel: Submodel[0..*]
+conceptDescription:
ConceptDescription[0..*]

AssetAdministrationShell
Identif iable

HasDataSpecification

+derivedFrom:
Reference[0..1]
+assetInformation:
AssetInformation
+submodel: Reference[0..*]

Submodel

Identif iable
HasKind

HasSemantics
Qualifiable

HasDataSpecification

+submodelElement:
SubmodelElement[0..*]

ConceptDescription
Identif iable

HasDataSpecification

+isCaseOf: Reference[0..*]

Reference

submodel
0..*

Reference

derivedFrom
0..1

Figure 40. Metamodel for Environment

Note: Environment is not an identifiable or referable element. It is introduced to enable file transfer as well as
serialization.

Class: Environment

Explanation: Container for the sets of different identifiables

62

Inherits from: —

ID: https://admin-shell.io/aas/3/1/Environment

Attribute ID

Explanation Type Card.

assetAdministrationShell https://admin-shell.io/aas/3/1/Environment/assetAdministrationShell

Asset Administration Shell AssetAdministrationShell 0..*

submodel https://admin-shell.io/aas/3/1/Environment/submodel

Submodel Submodel 0..*

conceptDescription https://admin-shell.io/aas/3/1/Environment/conceptDescription

Concept description ConceptDescription 0..*

Referencing

Overview

Two kinds of references are distinguished: references to external objects or entities (external reference) and
references to model elements of the same or another Asset Administration Shell (model reference). Model references
are also used for metamodel inherent relationships like submodels of an Asset Administration Shell (notation see
Annex UML Templates).

An external reference is a unique identifier. The identifier can be a concatenation of different identifiers, representing
e.g. an IRDI-Path.

Note: references should not be mixed up with locators. Even URLs can be used as identifiers and do not
necessarily describe a resource that can be accessed.

Reference Attributes

Reference

+type: ReferenceTypes
+referredSemanticId:
Reference[0..1]
+key: Key[1..*] «ordered»

Key

+type: KeyTypes
+value: Identifier

«enumeration»
ReferenceTypes

ExternalReference
ModelReference

Figure 41. Metamodel of Reference

63

See Matching Algorithm for References for reference matching.

Class: Reference

Explanation: Reference to either a model element of the same or another Asset Administration
Shell or to an external entity

A model reference is an ordered list of keys, each key referencing an element. The
complete list of keys may, for example, be concatenated to a path that gives unique
access to an element.

An external reference is a reference to an external entity.

Inherits from: —

ID: https://admin-shell.io/aas/3/1/Reference

Attribute ID

Explanation Type Card.

type https://admin-shell.io/aas/3/1/Reference/type

Type of the reference

Denotes whether the reference is an
external reference or a model reference

ReferenceTypes 1

referredSemanticId https://admin-shell.io/aas/3/1/Reference/referredSemanticId

Expected semantic ID of the referenced
model element
(Reference/type=ModelReference); there
typically is no semantic ID for the referenced
object of external references
(Reference/type=ExternalReference).

Note 1: if
Reference/referredSemanticId is
defined, the semanticId of the model
element referenced should have a
matching semantic ID. If this is not the
case, a validator should raise a
warning.

Note 2: it is recommended to use an
external reference for the semantic ID
expected from the referenced model
element.

Reference 0..1

key <<ordered>> https://admin-shell.io/aas/3/1/Reference/key

Unique reference in its name space Key 1..*

64

Reference Types Enumeration

Enumeration: ReferenceTypes

Explanation: Enumeration for denoting whether an element is an external or model reference

Set of: —

ID: https://admin-shell.io/aas/3/1/ReferenceTypes

Literal ID

Explanation

ExternalReference https://admin-shell.io/aas/3/1/ReferenceTypes/ExternalReference

External reference

ModelReference https://admin-shell.io/aas/3/1/ReferenceTypes/ModelReference

Model reference

Key Attributes

Key

+type: KeyTypes
+value: Identifier

«enumeration»
KeyTypes

AnnotatedRelationshipElement
AssetAdministrationShell
BasicEventElement
Blob
Capability
ConceptDescription
DataElement
Entity
EventElement
File
FragmentReference
GlobalReference
Identifiable
MultiLanguageProperty
Operation
Property
Range
Referable
ReferenceElement
RelationshipElement
Submodel
SubmodelElement
SubmodelElementCollection
SubmodelElementList

Figure 42. Metamodel of Keys

Keys are used to define references (Reference).

65

Class: Key

Explanation: A key is a reference to an element by its ID

Inherits from: —

ID: https://admin-shell.io/aas/3/1/Key

Attribute ID

Explanation Type Card.

type https://admin-shell.io/aas/3/1/Key/type

Denotes which kind of entity is referenced

If Key/type = GlobalReference, the key
represents a reference to a source that can
be globally identified.

If Key/type = FragmentReference, the key
represents a bookmark or a similar local
identifier within its parent element as
specified by the key that precedes this key.

In all other cases, the key references a
model element of the same or another Asset
Administration Shell. The name of the model
element is explicitly listed.

KeyTypes 1

value https://admin-shell.io/aas/3/1/Key/value

The key value, for example an IRDI or a URI
or the idShort or any other fragment value

Identifier 1

An example for using a FragmentId as type of a key is a reference to an element within a file that is part of an Asset
Administration Shell aasx package.

66

Key Types Enumeration

«enumeration»
KeyTypes

AnnotatedRelationshipElement
AssetAdministrationShell
BasicEventElement
Blob
Capability
ConceptDescription
DataElement
Entity
EventElement
File
FragmentReference
GlobalReference
Identifiable
MultiLanguageProperty
Operation
Property
Range
Referable
ReferenceElement
RelationshipElement
Submodel
SubmodelElement
SubmodelElementCollection
SubmodelElementList

Figure 43. Metamodel of KeyTypes Enumeration

Enumeration: KeyTypes

Explanation: Enumeration of different key value types within a key

Set of: FragmentKeys, AasReferables, GloballyIdentifiables

ID: https://admin-shell.io/aas/3/1/KeyTypes

Literal ID

Explanation

AnnotatedRelationshipElement https://admin-shell.io/aas/3/1/KeyTypes/AnnotatedRelationshipElement

Annotated relationship element

AssetAdministrationShell https://admin-shell.io/aas/3/1/KeyTypes/AssetAdministrationShell

Asset Administration Shell

BasicEventElement https://admin-shell.io/aas/3/1/KeyTypes/BasicEventElement

Basic event element

67

Blob https://admin-shell.io/aas/3/1/KeyTypes/Blob

Blob

Capability https://admin-shell.io/aas/3/1/KeyTypes/Capability

Capability

ConceptDescription https://admin-shell.io/aas/3/1/KeyTypes/ConceptDescription

Concept Description

DataElement https://admin-shell.io/aas/3/1/KeyTypes/DataElement

Data Element

Note: data elements are abstract, i.e. if a key uses "DataElement", the
reference may be a property, file, etc.

Entity https://admin-shell.io/aas/3/1/KeyTypes/Entity

Entity

EventElement https://admin-shell.io/aas/3/1/KeyTypes/EventElement

Event

Note: event element is abstract.

File https://admin-shell.io/aas/3/1/KeyTypes/File

File

FragmentReference https://admin-shell.io/aas/3/1/KeyTypes/FragmentReference

Bookmark or a similar local identifier of a subordinate part of a primary resource

GlobalReference https://admin-shell.io/aas/3/1/KeyTypes/GlobalReference

Global reference

Identifiable https://admin-shell.io/aas/3/1/KeyTypes/Identifiable

Identifiable

Note: identifiable is abstract, i.e. if a key uses "Identifiable" the reference
may be an Asset Administration Shell, a submodel or a concept
description.

MultiLanguageProperty https://admin-shell.io/aas/3/1/KeyTypes/MultiLanguageProperty

Property with a value that can be provided in multiple languages

68

Operation https://admin-shell.io/aas/3/1/KeyTypes/Operation

Operation

Property https://admin-shell.io/aas/3/1/KeyTypes/Property

Property

Range https://admin-shell.io/aas/3/1/KeyTypes/Range

Range with min and max

Referable https://admin-shell.io/aas/3/1/KeyTypes/Referable

Note: referables are abstract, i.e. if a key uses "Referable", the reference
may be an Asset Administration Shell, a property, etc.

ReferenceElement https://admin-shell.io/aas/3/1/KeyTypes/ReferenceElement

Reference

RelationshipElement https://admin-shell.io/aas/3/1/KeyTypes/RelationshipElement

Relationship

Submodel https://admin-shell.io/aas/3/1/KeyTypes/Submodel

Submodel

SubmodelElement https://admin-shell.io/aas/3/1/KeyTypes/SubmodelElement

Submodel element

Note: submodel elements are abstract, i.e. if a key uses
"SubmodelElement", the reference may be a property, a submodel
element list, an operation, etc.

SubmodelElementCollection https://admin-shell.io/aas/3/1/KeyTypes/SubmodelElementCollection

Struct of submodel elements

SubmodelElementList https://admin-shell.io/aas/3/1/KeyTypes/SubmodelElementList

List of submodel elements

Fragment Keys Enumeration

Enumeration: FragmentKeys

69

Explanation: Enumeration of different fragment key value types within a key

Note: not used as type but in constraints.

Set of: AasReferableNonIdentifiables, GenericFragmentKeys

ID: https://admin-shell.io/aas/3/1/FragmentKeys

Literal ID

Explanation

AnnotatedRelationshipElement https://admin-shell.io/aas/3/1/FragmentKeys/AnnotatedRelationshipElement

Annotated relationship element

BasicEventElement https://admin-shell.io/aas/3/1/FragmentKeys/BasicEventElement

Basic event element

Blob https://admin-shell.io/aas/3/1/FragmentKeys/Blob

Blob

Capability https://admin-shell.io/aas/3/1/FragmentKeys/Capability

Capability

DataElement https://admin-shell.io/aas/3/1/FragmentKeys/DataElement

Data Element

Note: data elements are abstract, i.e. if a key uses "DataElement", the
reference may be a property, file, etc.

Entity https://admin-shell.io/aas/3/1/FragmentKeys/Entity

Entity

EventElement https://admin-shell.io/aas/3/1/FragmentKeys/EventElement

Event

Note: event element is abstract.

File https://admin-shell.io/aas/3/1/FragmentKeys/File

File

FragmentReference https://admin-shell.io/aas/3/1/FragmentKeys/FragmentReference

Bookmark or a similar local identifier of a subordinate part of a primary resource

70

MultiLanguageProperty https://admin-shell.io/aas/3/1/FragmentKeys/MultiLanguageProperty

Property with a value that can be provided in multiple languages

Operation https://admin-shell.io/aas/3/1/FragmentKeys/Operation

Operation

Property https://admin-shell.io/aas/3/1/FragmentKeys/Property

Property

Range https://admin-shell.io/aas/3/1/FragmentKeys/Range

Range with min and max

ReferenceElement https://admin-shell.io/aas/3/1/FragmentKeys/ReferenceElement

Reference

RelationshipElement https://admin-shell.io/aas/3/1/FragmentKeys/RelationshipElement

Relationship

SubmodelElement https://admin-shell.io/aas/3/1/FragmentKeys/SubmodelElement

Submodel element

Note: submodel elements are abstract, i.e. if a key uses
"SubmodelElement", the reference may be a property, a submodel
element list, an operation, etc.

SubmodelElementCollection https://admin-shell.io/aas/3/1/FragmentKeys/SubmodelElementCollection

Struct of submodel elements

SubmodelElementList https://admin-shell.io/aas/3/1/FragmentKeys/SubmodelElementList

List of submodel elements

Logical Enumerations

Figure 44 presents a logical model of key types. These logical enumerations may be used to formulate constraints.

71

Key

+type: KeyTypes
+value: Identifier

«enumeration»
GenericFragmentKeys

FragmentReference

«enumeration»
GenericGloballyIdentifiables

GlobalReference

«enumeration»
AasIdentifiables

AssetAdministrationShell
ConceptDescription
Identifiable
Submodel

«enumeration»
AasContainerSubmodelElements

AnnotatedRelationshipElement
Entity
SubmodelElementCollection
SubmodelElementList

«enumeration»
AasNonContainerSubmodelElements

BasicEventElement
Blob
Capability
DataElement
EventElement
File
MultiLanguageProperty
Operation
Property
Range
ReferenceElement
RelationshipElement

«enumeration»
KeyTypes

«enumeration»
FragmentKeys

«enumeration»
AasReferables

Referable

«enumeration»
AasSubmodelElements

SubmodelElement

«enumeration»
AasReferableNonIdentifiables

«enumeration»
GloballyIdentifiables

Figure 44. Logical Model for Keys of References (non-normative)

Logical Enumeration AasReferableNonIdentifiables

Enumeration: AasReferableNonIdentifiables

Explanation: Enumeration of different fragment key value types within a key

Note: not used as type but in constraints.

Set of: AasSubmodelElements

ID: https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables

72

Literal ID

Explanation

AnnotatedRelationshipElement https://admin-
shell.io/aas/3/1/AasReferableNonIdentifiables/AnnotatedRelationshipElement

Annotated relationship element

BasicEventElement https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/BasicEventElement

Basic event element

Blob https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/Blob

Blob

Capability https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/Capability

Capability

DataElement https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/DataElement

Data Element

Note: data elements are abstract, i.e. if a key uses "DataElement", the
reference may be a property, file, etc.

Entity https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/Entity

Entity

EventElement https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/EventElement

Event

Note: event element is abstract.

File https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/File

File

MultiLanguageProperty https://admin-
shell.io/aas/3/1/AasReferableNonIdentifiables/MultiLanguageProperty

Property with a value that can be provided in multiple languages

Operation https://admin-shell.io/aas/3/1/AasSubmodelElements/Operation

Operation

73

Property https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/Property

Property

Range https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/Range

Range with min and max

ReferenceElement https://admin-shell.io/aas/3/1/AasReferableNonIdentifiables/ReferenceElement

Reference

RelationshipElement https://admin-
shell.io/aas/3/1/AasReferableNonIdentifiables/RelationshipElement

Relationship

SubmodelElement https://admin-shell.io/aas/3/1/AAasReferableNonIdentifiables/SubmodelElement

Submodel element

Note: submodel elements are abstract, i.e. if a key uses
"SubmodelElement", the reference may be a property, a submodel
element list, an operation, etc.

SubmodelElementCollection https://admin-
shell.io/aas/3/1/AasReferableNonIdentifiables/SubmodelElementCollection

Struct of submodel elements

SubmodelElementList https://admin-
shell.io/aas/3/1/AasReferableNonIdentifiables/SubmodelElementList

List of submodel elements

Logical Enumeration AasNonContainerSubmodelElements

Enumeration: AasNonContainerSubmodelElements

Explanation: Enumeration of non-container submodel element types including abstract
submodel element types

Note: not used as type but may be used in constraints.

Set of: —

ID: https://admin-shell.io/aas/3/1/AasNonContainerSubmodelElements

Literal ID

Explanation

74

BasicEventElement https://admin-
shell.io/aas/3/1/AasNonContainerSubmodelElements/BasicEventElement

Basic event element

Blob https://admin-shell.io/aas/3/1/AasSubmodelElements/Blob

Blob

Capability https://admin-shell.io/aas/3/1/AasNonContainerSubmodelElements/Capability

Capability

DataElement https://admin-
shell.io/aas/3/1/AasNonContainerSubmodelElements/DataElement

Data Element

Note: data elements are abstract, i.e. if a key uses "DataElement", the
reference may be a property, file, etc.

EventElement https://admin-
shell.io/aas/3/1/AasNonContainerSubmodelElements/EventElement

Event

Note: event element is abstract.

File https://admin-shell.io/aas/3/1/AasNonContainerSubmodelElements/File

File

MultiLanguageProperty https://admin-
shell.io/aas/3/1/AasNonContainerSubmodelElements/MultiLanguageProperty

Property with a value that can be provided in multiple languages

Operation https://admin-shell.io/aas/3/1/AasNonContainerSubmodelElements/Operation

Operation

Property https://admin-shell.io/aas/3/1/AasNonContainerSubmodelElements/Property

Property

Range https://admin-shell.io/aas/3/1/AasNonContainerSubmodelElements/Range

Range with min and max

ReferenceElement https://admin-
shell.io/aas/3/1/AasNonContainerSubmodelElements/ReferenceElement

Reference

75

RelationshipElement https://admin-
shell.io/aas/3/1/AasNonContainerSubmodelElements/RelationshipElement

Relationship

Logical Enumeration AasContainerSubmodelElements

Enumeration: AasContainerSubmodelElements

Explanation: Enumeration of conainer submodel element types including abstract container
submodel element types

Note: not used as type but may be used in constraints.

Set of: —

ID: https://admin-shell.io/aas/3/1/AasContainerSubmodelElements

Literal ID

Explanation

AnnotatedRelationshipElement https://admin-
shell.io/aas/3/1/AasContainerSubmodelElements/AnnotatedRelationshipElemen
t

Annotated relationship element

Entity https://admin-shell.io/aas/3/1/AasContainerSubmodelElements/Entity

Entity

SubmodelElementCollection https://admin-
shell.io/aas/3/1/AasContainerSubmodelElements/SubmodelElementCollection

Struct of submodel elements

SubmodelElementList https://admin-
shell.io/aas/3/1/AasContainerSubmodelElements/SubmodelElementList

List of submodel elements

Logical Enumeration AasReferables

Enumeration: AasReferables

Explanation: Enumeration of referables

Note: not used as type but in constraints.

Set of: AasReferableNonIdentifiables, AasIdentifiables

76

ID: https://admin-shell.io/aas/3/1/AasReferables

Literal ID

Explanation

AnnotatedRelationshipElement https://admin-shell.io/aas/3/1/AasReferables/AnnotatedRelationshipElement

Annotated relationship element

AssetAdministrationShell https://admin-shell.io/aas/3/1/AasReferables/AssetAdministrationShell

Asset Administration Shell

BasicEventElement https://admin-shell.io/aas/3/1/AasReferables/BasicEventElement

Basic event element

Blob https://admin-shell.io/aas/3/1/AasReferables/Blob

Blob

Capability https://admin-shell.io/aas/3/1/AasReferables/Capability

Capability

ConceptDescription https://admin-shell.io/aas/3/1/AasReferables/ConceptDescription

Concept description

DataElement https://admin-shell.io/aas/3/1/AasReferables/DataElement

Data element

Note: data elements are abstract, i.e. if a key uses "DataElement", the
reference may be a property, file, etc.

Entity https://admin-shell.io/aas/3/1/AasReferables/Entity

Entity

EventElement https://admin-shell.io/aas/3/1/AasReferables/EventElement

Event

Note: event element is abstract.

File https://admin-shell.io/aas/3/1/AasReferables/File

File

77

Identifiable https://admin-shell.io/aas/3/1/AasReferables/Identifiable

Identifiable

Note: identifiables are abstract, i.e. if a key uses "Identifiable", the
reference may be an Asset Administration Shell, a concept description,
etc.

MultiLanguageProperty https://admin-shell.io/aas/3/1/AasReferables/MultiLanguageProperty

Property with a value that can be provided in multiple languages

Operation https://admin-shell.io/aas/3/1/AasReferables/Operation

Operation

Property https://admin-shell.io/aas/3/1/AasReferables/Property

Property

Range https://admin-shell.io/aas/3/1/AasReferables/Range

Range with min and max

Referable https://admin-shell.io/aas/3/1/AasReferables/Referable

Note: referables are abstract, i.e. if a key uses "Referable", the reference
may be an Asset Administration Shell, a property, etc.

ReferenceElement https://admin-shell.io/aas/3/1/AasReferables/ReferenceElement

Reference

RelationshipElement https://admin-shell.io/aas/3/1/AasReferables/RelationshipElement

Relationship

Submodel https://admin-shell.io/aas/3/1/AasReferables/Submodel

Submodel

SubmodelElement https://admin-shell.io/aas/3/1/AasReferables/SubmodelElement

Submodel element

Note: submodel elements are abstract, i.e. if a key uses
"SubmodelElement", the reference may be a property, a submodel
element list, an operation, etc.

SubmodelElementCollection https://admin-shell.io/aas/3/1/AasReferables/SubmodelElementCollection

Struct of submodel elements

78

SubmodelElementList https://admin-shell.io/aas/3/1/AasReferables/SubmodelElementList

List of submodel elements

Logical Enumeration GenericFragmentKeys

Enumeration: GenericFragmentKeys

Explanation: Enumeration of generic fragment key value types within a key

Note: not used as type but in constraints.

Set of: —

ID: https://admin-shell.io/aas/3/1/GenericFragmentKeys

Literal ID

Explanation

FragmentReference https://admin-shell.io/aas/3/1/GenericFragmentKeys/FragmentReference

Bookmark or a similar local identifier of a subordinate part of a primary resource

Logical Enumeration AasIdentifiables

Enumeration: AasIdentifiables

Explanation: Enumeration of all metamodel element types that represent identifiables

Note: not used as type but in constraints.

Set of: —

ID: https://admin-shell.io/aas/3/1/AasIdentifiables

Literal ID

Explanation

AssetAdministrationShell https://admin-shell.io/aas/3/1/AasIdentifiables/AssetAdministrationShell

Asset Administration Shell

ConceptDescription https://admin-shell.io/aas/3/1/AasIdentifiables/ConceptDescription

Concept description

79

Identifiable https://admin-shell.io/aas/3/1/AasIdentifiables/Identifiable

Identifiable

Note: Identifiables are abstract, i.e. if a key uses "Identifiable", the
reference may be an Asset Administration Shell, a submodel, or a concept
description.

Submodel https://admin-shell.io/aas/3/1/AasIdentifiables/Submodel

Submodel

Logical Enumeration GenericGloballyIdentifiables

Enumeration: GenericGloballyIdentifiables

Explanation: Enumeration of different key value types within a key

Set of: —

ID: https://admin-shell.io/aas/3/1/GenericGloballyIdentifiables

Literal ID

Explanation

GlobalReference https://admin-shell.io/aas/3/1/GenericGloballyIdentifiables/GlobalReference

Global reference

Logical Enumeration GloballyIdentifiables

Enumeration: GloballyIdentifiables

Explanation: Enumeration of globally identifiable elements

Set of: https://admin-shell.io/aas/3/1/GenericGloballyIdentifiables, https://admin-
shell.io/aas/3/1/AasIdentifiables

ID: https://admin-shell.io/aas/3/1/GloballyIdentifiables

Literal ID

Explanation

AssetAdministrationShell https://admin-shell.io/aas/3/1/GloballyIdentifiables/AssetAdministrationShell

Asset Administration Shell

80

ConceptDescription https://admin-shell.io/aas/3/1/GloballyIdentifiables/ConceptDescription

Concept description

GlobalReference https://admin-shell.io/aas/3/1/GloballyIdentifiables/GlobalReference

Global reference

Identifiable https://admin-shell.io/aas/3/1/GloballyIdentifiables/Identifiable

Identifiable

Note: Identifiables are abstract, i.e. if a key uses "Identifiable", the
reference may be an Asset Administration Shell, a submodel, or a concept
description.

Submodel https://admin-shell.io/aas/3/1/GloballyIdentifiables/Submodel

Submodel

Constraints for References

Constraints

Constraint AASd-121: For References, the value of Key/type of the first _key_ of _Reference/keys_ shall be one of
GloballyIdentifiables.

Constraint AASd-122: For external references, i.e. References with _Reference/type_ = ExternalReference, the value
of Key/type of the first key of _Reference/keys_ shall be one of GenericGloballyIdentifiables.

Constraint AASd-123: For model references, i.e. References with _Reference/type_ = ModelReference, the value of
Key/type of the first _key_ of _Reference/keys_ shall be one of AasIdentifiables.

Constraint AASd-124: For external references, i.e. References with _Reference/type_ = ExternalReference, the last
key of _Reference/keys_ shall be either one of GenericGloballyIdentifiables or one of GenericFragmentKeys.

Constraint AASd-125: For model references, i.e. References with Reference/type = ModelReference with more than
one key in _Reference/keys_, the value of Key/type of each of the keys following the first key of _Reference/keys_
shall be one of FragmentKeys.

Note: Constraint AASd-125 ensures that the shortest path is used.

Constraint AASd-126: For model references, i.e. References with _Reference/type_ = ModelReference with more than
one key in _Reference/keys,_ the value of Key/type of the last Key in the reference key chain may be one of
GenericFragmentKeys or no key at all shall have a value out of GenericFragmentKeys.

Constraint AASd-127: For model references, i.e. References with _Reference/type_ = ModelReference with more than
one key in _Reference/keys,_ a key with Key/type _FragmentReference_ shall be preceded by a key with Key/type
File or _Blob_. All other Asset Administration Shell fragments, i.e. Key/type values out of AasSubmodelElements ,
do not support fragments.

81

Note: which kind of fragments are supported depends on the content type and the specification of allowed
fragment identifiers for the corresponding resource referenced.

Constraint AASd-128: For model references, i.e. References with _Reference/type_ = ModelReference, the Key/value
of a Key preceded by a Key with Key/type = SubmodelElementList is an integer number denoting the position in the
array of the submodel element list.

Examples

In the following examples for valid und invalid model references and external references. The notation follows the
grammar as defined in Text Serialization of Values of Type "Reference". In addition to the examples in Examples for
Text Serialization of Values of Type "Reference" in this clause also the constraints as defined for references are taken
into account.

Examples for valid references:

(Submodel)https://example.com/aas/1/1/1234859590

[ModelRef](Submodel)https://example.com/aas/1/1/1234859590

(GlobalReference)https://example.com/specification.html

[ExternalRef](GlobalReference)https://example.com/specification.html

Examples for invalid references:

[Submodel](GlobalReference)https://example.com/aas/1/1/1234859590

Key type "Submodel" is not a globally identifiable (see Constraint AASd-121).

[ExternalRef](Submodel)https://example.com/aas/1/1/1234859590

Key type "Submodel" is no generic globally identifiable (see Constraint AASd-122).

[ModelRef](GlobalReference)https://example.com/aas/1/1/1234859590

Key type "GlobalReference" is no AAS identifiable (see Constraint AASd-123). The last key type "GlobalReference" is
neither a generic globally identifiable nor a generic fragment key (see Constraint AASd-124).

Examples for valid external references:

(GlobalReference)https://example.com/ressource

(GlobalReference)0173-1#02-EXA123#001

(GlobalReference)https://example.com/specification.html (FragmentReference)Hints

82

Note:

(GlobalReference)https://example.com/specification.html (FragmentReference)Hints

represents the path with fragment identifier

https://example.com/specification.html#Hints

Examples for valid model references:

(AssetAdministrationShell)https://example.com/aas/1/0/12348

(Submodel)https://example.com/aas/1/1/1234859590

(Submodel)https://example.com/aas/1/1/1234859590, (File)Specification

(ConceptDescription)0173-1#02-BAA120#008

(Submodel)https://example.com/aas/1/1/1234859590, (SubmodelElementList)Documents,
(SubmodelElementCollection)0, (MultiLanguageProperty)Title

(Submodel)https://example.com/aas/1/1/1234859590, (SubmodelElementCollection)Manual,
(MultiLanguageProperty)Title

Note:

The extract

(SubmodelElementCollection)0, (MultiLanguageProperty)Title

from

(Submodel)https://example.com/aas/1/1/1234859590, (SubmodelElementList)Documents,
(SubmodelElementCollection)0, (MultiLanguageProperty)Title

may be identical to the extract

(SubmodelElementCollection)Manual, (MultiLanguageProperty)Title

from

(Submodel)https://example.com/aas/1/1/1234859590, (SubmodelElementCollection)Manual,

83

(MultiLanguageProperty)Title

semantically and content-wise. The difference is that more than one document is allowed in the first submodel
and thus a submodel element list is defined: elements in a list are numbered. In the second submodel several
documents may be added as collections but the number is typically fixed.

(Submodel)https://example.com/aas/1/1/1234859590, (File)Specification,
(FragmentReference)Hints

Note: assuming the file has the value using the absolute path

https://example.com/specification.html

(and not a relative path), the first reference points to the same information as the global reference

(GlobalReference)https://example.com/specification.html, (FragmentReference)Hints

(Submodel)https://example.com/aas/1/1/1234859590, (Blob)Specification,
(FragmentReference)Hints

Examples for invalid model references:

(GlobalReference)https://example.com/aas/1/1/1234859590

This is an external reference but no model reference.

(Property)0173-1#02-BAA120#008

This reference does not start with the ID of an Identifiable, i.e. key type "Property" is no AAS identifiable (see
Constraint AASd-123). Additionally, the value is not a valid idShort for a Property submodel element since it contains
special characters like "#" (see Constraint AASd-002).

[ModelRef](FragmentReference)Hints (Property)Temperature

Key "Property" is no generic fragment key and therefore fragment key "FragmentReference" is not allowed before (see
Constraint- AASd-126).

(Submodel)https://example.com/aas/1/1/1234859590, (EventElement)Event,
(FragmentReference)Comment

This model reference is invalid because fragment references so far are only defined for "File" and "Blob" submodel

84

elements (see Constraint AASd-127).

(AssetAdministrationShell)https://example.com/aas/1/0/12348,
(Submodel)https://example.com/aas/1/1/1234859590, (Property)Temperature

This is not a valid model reference because key type "AssetAdministrationShell" and "Submodel" are both global
identifiables and there shall be only one (see Constraints Constraint AASd-125).

Data Types

Predefined Simple Data Types

The metamodel of the Asset Administration Shell uses some of the predefined simple data types of the XML Schema
Definition (XSD) as its basic data types. See Table 3 for an overview of the used types. Their definition is outside the
scope of this document.

The meaning and format of xsd types is specified in XML Schema 1.0 (https://www.w3.org/TR/xmlschema-2). The
simple type "langString" is specified in the Resource Description Framework (RDF) [1].

See Constraints for Types for constraints on types.

Table 3. Simple Data Types Used in Metamodel

Source Basic Data Type Value Range Sample Values

xsd string Character string (but not all Unicode
character strings)

"Hello world", "¬¬¬¬¬¬¬¬ ¬¬¬¬¬",
"¬¬¬¬¬¬¬""

xsd base64Binary base64-encoded binary data
SGVsbG8sIFdvcmxkIQ==

xsd boolean true, false true, false

xsd dateTime Date and time with or without time zone "2000-01-01T14:23:00",
"2000-01-
01T14:23:00.66372+14:00"[2]

xsd duration Duration of time "-P1Y2M3DT1H",
"PT1H5M0S"

rdf langString Strings with language tags "Hello"@en,
"Hallo"@de

Note: this is written in
RDF/Turtle syntax, only "Hello"
and "Hallo" are the actual
values.

Primitive Data Types

Table 4 lists the Primitives used in the metamodel. Primitive data types start with a capital letter.

85

https://www.w3.org/TR/xmlschema-2
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#base64Binary
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#duration

Note: see Constraints for Types for constraints on types.

Table 4. Primitive Data Types Used in Metamodel

Primitive ID

Definition Value Examples

BlobType https://admin-shell.io/aas/3/0/BlobType

base64binary

to represent file content
(binaries and non-binaries)

SGVsbG8sIFdvcmxkIQ==

for "Hello, World!"

ContentType admin-shell.io/aas/3/1/ContentType

string with max 128 and min 1
characters

Note: string conformant to
RFC2046.

A media type (also MIME
type and content type) […]
is a two-part identifier for
file formats and format
contents transmitted on the
Internet. The Internet
Assigned Numbers
Authority (IANA) is the
official authority for the
standardization and
publication of these
classifications. Media
types were originally
defined in Request for
Comments 2045 in
November 1996 as a part
of MIME specification, for
denoting type of email
message content and
attachments.[4]

application/pdf

image/jpeg

86

https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml

DateTimeUt
c

https://admin-shell.io/aas/3/1/DateTimeUtc

dateTime for UTC
1997-07-16T19:20+01:00

2025-02-24T12:31:14Z

Identifier https://admin-shell.io/aas/3/1/Identifier

string with max 2048 and min 1
characters

https://cust/123456

0173-1#02-BAA120#008

LabelType https://admin-shell.io/aas/3/1/LabelType

string with max 64 and min 1
characters

"ABC1234"

87

LangStringS
et

https://admin-shell.io/aas/3/1/LangStringSet

Array of elements of type
langString

Note 1: langString is a
RDF data type.

Note 2: a langString is a
string value tagged with a
language code.

Realization depends on the
serialization rules for a
technology.

Example for the attribute with name "description" of "Referable",
i.e. of type "MultiLanguageTextType": In xml:

<description>
 <langStringTextType>
 <language>en</language>
 <text>This is a multi-language value in
English</text>
 </langStringTextType>
 <langStringTextType>
 <language>de</language>
 <text>Das ist ein Multi-Language-Wert in
Deutsch</text>
 </langStringTextType>
</description>

In rdf:

[] <https://admin-
shell.io/aas/3/1/Referable/description> [
 rdf:type aas:LangStringTextType ;
 <https://admin-
shell.io/aas/3/1/AbstractLangString/language>
"en"^^xs:string ;
 <https://admin-
shell.io/aas/3/1/AbstractLangString/text> "This
is a multi-language value in English"^^xs:string
;
] ;
.

In JSON :

"description": [
 {
 "language":"en",
 "text": "This is a multi-language value in
English."
 },
 {
 "language":"de",
 "text": "Das ist ein Multi-Language-Wert in
Deutsch."
 }
]

88

MessageTo
picType

https://admin-shell.io/aas/3/1/MessageTopicType

string with max 255 and min 1
characters

MultiLangua
geNameTyp
e

https://admin-shell.io/aas/3/1/MultiLanguageNameType

LangStringSet

Each langString within the array
of strings has a max 128 of and
a min of 1 characters (as for
NameType).

See LangStringSet

MultiLangua
geTextType

https://admin-shell.io/3/1/MultiLanguageTextType

LangStringSet

Each string within langString
has a max of 1,023 and min of 1
characters.

See LangStringSet

NameType https://admin-shell.io/aas/3/1/NameType

string with max 128 and min 1
characters

"ManufacturerPartId"

PathType https://admin-shell.io/aas/3/1/PathType

string with max 2048 and min 1
characters

conformant to a URI as per RFC
2396

Note: Values with this
restriction are also
conformant to the xsd
datatype anyURI.

"A wide range of
internationalized resource
identifiers can be specified
when an anyURI is called
for, and still be understood
as URIs per RFC 2396 and
its successor(s)."

Source: W3C XML
Schema Definition
Language (XSD) 1.0 Part
2: Datatypes

./Specification.pdf

file:c:/local/Specification.pdf

http://www.example.org

FTP://unicode.org

89

https://www.w3.org/TR/xmlschema-2/#RFC2396
https://www.w3.org/TR/xmlschema-2/#RFC2396
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#RFC2396
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#anyURI

QualifierTyp
e

https://admin-shell.io/aas/3/1/QualifierType

NameType "ExpressionSemantic" (as specified in DIN SPEC 92000:2019-
09, see [16])

"life cycle qual" (as specified in IEC 61360-7 - IEC/SC 3D -
Common Data Dictionary (CDD - V2.0015.0004)

RevisionTyp
e

https://admin-shell.io/aas/3/1/RevisionType

string with max 4 and min 1
characters following the
following regular expression:

^([0-9]|[1-9][0-9]*)$

"0"

"7"

"567"

ValueDataT
ype

https://admin-shell.io/aas/3/1/ValueDataType

any xsd atomic type as specified
via DataTypeDefXsd

"This is a string value"

10

1.5

2020-04-01

True

VersionType https://admin-shell.io/aas/3/1/VersionType

string with max 4 and min 1
characters

following the following regular
expression:

^([0-9]|[1-9][0-9]*)$

"1"

"9999"

Enumeration for Submodel Element Value Types

Enumerations are primitive data types. Most of the enumerations are defined in the context of their class. This clause
defines enumerations for submodel element value types[5].

The predefined types used to define the type of values of properties and other values use the names and the
semantics of XML Schema Definition (XSD)[6]. Additionally, the type "langString" with the semantics as defined in the
Resource Description Framework (RDF)[7] is used. "langString" is a string value tagged with a language code.

Note 1: RDF[8] uses XML Schema Built-in data types from Version 1.1 but recommends to use only a subset of
xsd data types. That is why they are excluded from the allowed data types in DataTypeDefXsd.

• XSD BuildIn List types are not supported (ENTITIES, IDREFS and NMTOKENS).

• XSD string BuildIn types are not supported (normalizedString, token, language, NCName, ENTITY, ID,
IDREF).

• The following XSD primitive types are not supported: NOTATION, QName.

90

https://cdd.iec.ch/cdd/common/iec61360-7.nsf/SearchFrameset?OpenFrameSet

Note 2: additionally, the following RDF types are not supported in DataTypeDefXsd: HTML and XMLLiteral.

«enumeration»
DataTypeDefRdf

rdf:langString

Figure 45. DefTypeDefRdf Enumeration

The enumeration is derived from Figure 47.

«enumeration»
DataTypeDefXsd

xs:anyURI
xs:base64Binary
xs:boolean
xs:byte
xs:date
xs:dateTime
xs:decimal
xs:double
xs:duration
xs:float
xs:gDay
xs:gMonth
xs:gMonthDay
xs:gYear
xs:gYearMonth
xs:hexBinary
xs:int
xs:integer
xs:long
xs:negativeInteger
xs:nonNegativeInteger
xs:nonPositiveInteger
xs:positiveInteger
xs:short
xs:string
xs:time
xs:unsignedByte
xs:unsignedInt
xs:unsignedLong
xs:unsignedShort

Figure 46. Data TypeDefXsd Enumeration

Table 5 depicts example values and the value range of the different data types.

The left column "Data Type" shows the data types which can be used for submodel element values. The data types
are defined according to the W3C XML Schema (https://www.w3.org/TR/xmlschema-2/#built-in-datatypes and
https://www.w3.org/TR/xmlschema-2/#built-in-derived). "Value Range" further explains the possible range of data
values for this data type. The right column shows related examples for values of the corresponding data type.

Table 5. Data Types with Examples [4]

91

https://www.w3.org/TR/xmlschema-2/#built-in-datatypes
https://www.w3.org/TR/xmlschema-2/#built-in-derived

Data Type Value Range Sample Values

Core types xs:string Character string (but not
all Unicode character
strings)

"Hello world"

"¬¬¬¬¬¬¬¬ ¬¬¬¬¬"

"¬¬¬¬¬¬¬"

xs:boolean true, false true, false

xs:decimal Arbitrary-precision
decimal numbers

-1.23

126789672374892739424.543233

+100000.00, 210

xs:integer Arbitrary-size integer
numbers

-1

0

1267896754323329387928374298374298
37429

+100000

IEEE floating-
point numbers

xs:double 64-bit floating point
numbers incl. ±Inf, ±0,
NaN

-1.0

+0.0

-0.0

234.567e8

-INF

NaN

xs:float 32-bit floating point
numbers incl. ±Inf, ±0,
NaN

-1.0

+0.0

-0.0

234.567e8

-INF

NaN

Time and
dates

xs:date Dates (yyyy-mm-dd) with
or without time zone

"2000-01-01"

"2000-01-01Z"

"2000-01-01+12:05"

92

Data Type Value Range Sample Values

xs:time Times (hh:mm:ss.sss…)
with or without time zone

"14:23:00"

"14:23:00.527634Z"

"14:23:00+03:00"

xs:dateTime Date and time with or
without time zone

"2000-01-01T14:23:00"

"2000-01-01T14:23:00.66372+14:00"[9]

Recurring and
partial dates

xs:gYear Gregorian calendar year "2000"

"2000+03:00"

xs:gMonth Gregorian calendar
month

"--04"

"--04+03:00"

xs:gDay Gregorian calendar day
of the month

"---04"

"---04+03:00"

xs:gYearMonth Gregorian calendar year
and month

"2000-01"

"2000-01+03:00"

xs:gMonthDay Gregorian calendar
month and day

"--01-01"

"--01-01+03:00"

xs:duration Duration of time "P30D"

"-P1Y2M3DT1H", "PT1H5M0S"

Limited-range
integer
numbers

xs:byte -128…+127 (8 bit) -1, 0

127

xs:short -32768…+32767 (16 bit) -1, 0

32767

xs:int 2147483648…+2147483
647 (32 bit)

-1, 0

2147483647

xs:long -9223372036854775808
…+92233720368547758
07 (64 bit)

-1

0, 9223372036854775807

xs:unsignedByte 0…255 (8 bit) 0

1

255

93

Data Type Value Range Sample Values

xs:unsignedShort 0…65535 (16 bit) 0

1

65535

xs:unsignedInt 0…4294967295 (32 bit) 0

1

4294967295

xs:unsignedLong 0…18446744073709551
615 (64 bit)

0

1

18446744073709551615

xs:positiveInteger Integer numbers >0 1

7345683746578364857368475638745

xs:nonNegativeInteger Integer numbers ¬0 0

1

734568374657836485736847563

xs:negativeInteger Integer numbers <0 -1

-23487263847628376482736487263

xs:nonPositiveInteger Integer numbers ¬0 -1

0

-938458374985739874987989873

Encoded
binary data

xs:hexBinary Hex-encoded binary data "6b756d6f77617368657265"

xs:base64Binary Base64-encoded binary
data SGVsbG8sIFdvcmxkIQ==

Miscellaneous
types

xs:anyURI Absolute or relative URIs
and IRIs

https://customer.com/demo/aas/1/1/12348
59590

"urn:example:company:1.0.0"

94

Data Type Value Range Sample Values

rdf:langString Strings with language
tags

"Hello"@en

"Hallo"@de

Note: this is written in RDF/Turtle
syntax, @en and de are the language
tags.

Enumeration: DataTypeDefXsd

Explanation: Enumeration listing selected xsd anySimpleTypes of XML Schema 1.0

For more details see https://www.w3.org/TR/xmlschema-2/#built-in-primitive-
datatypes

Set of: —

ID: https://admin-shell.io/aas/3/1/DataTypeDefXsd

Literal Explanation

xs:anyURI see: https://www.w3.org/TR/xmlschema-2/#anyURI

xs:base64Binary see: https://www.w3.org/TR/xmlschema-2/#base64Binary

xs:boolean see https://www.w3.org/TR/xmlschema-2/#boolean

xs:byte see https://www.w3.org/TR/xmlschema-2/#byte

xs:date see https://www.w3.org/TR/xmlschema-2/#date

xs:dateTime see https://www.w3.org/TR/xmlschema-2/#dateTime

xs:decimal see https://www.w3.org/TR/xmlschema-2/#decimal

xs:double see https://www.w3.org/TR/xmlschema-2/#double

xs:duration see https://www.w3.org/TR/xmlschema-2/#duration

xs:float see https://www.w3.org/TR/xmlschema-2/#float

xs:gDay see https://www.w3.org/TR/xmlschema-2/#gDay

xs:gMonth see https://www.w3.org/TR/xmlschema-2/#gMonth

xs:gMonthDay see https://www.w3.org/TR/xmlschema-2/#gMonthDay

xs:gYear see https://www.w3.org/TR/xmlschema-2/#gYear

xs:gYearMonth see https://www.w3.org/TR/xmlschema-2/#gYearMonth

95

https://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
https://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#base64Binary
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#byte
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#double
https://www.w3.org/TR/xmlschema-2/#duration
https://www.w3.org/TR/xmlschema-2/#float
https://www.w3.org/TR/xmlschema-2/#gDay
https://www.w3.org/TR/xmlschema-2/#gMonth
https://www.w3.org/TR/xmlschema-2/#gMonthDay
https://www.w3.org/TR/xmlschema-2/#gYear
https://www.w3.org/TR/xmlschema-2/#gYearMonth

xs:hexBinary see https://www.w3.org/TR/xmlschema-2/#hexBinary

xs:int see https://www.w3.org/TR/xmlschema-2/#int

xs:integer see https://www.w3.org/TR/xmlschema-2/#integer

xs:long see https://www.w3.org/TR/xmlschema-2/#long

xs:negativeInteger see https://www.w3.org/TR/xmlschema-2/#negativeInteger

xs:nonNegativeInteger see: https://www.w3.org/TR/xmlschema-2/#nonNegativeInteger

xs:nonPositiveInteger see: https://www.w3.org/TR/xmlschema-2/#nonPositiveInteger

xs:positiveInteger see: https://www.w3.org/TR/xmlschema-2/#positiveInteger

xs:short see: https://www.w3.org/TR/xmlschema-2/#short

xs:string see: https://www.w3.org/TR/xmlschema-2/#string

xs:time see: https://www.w3.org/TR/xmlschema-2/#time

xs:unsignedByte see: https://www.w3.org/TR/xmlschema-2/#unsignedShort

xs:unsignedInt see: https://www.w3.org/TR/xmlschema-2/#unsignedInt

xs:unsignedLong see: https://www.w3.org/TR/xmlschema-2/#unsignedLong

xs:unsignedShort see: https://www.w3.org/TR/xmlschema-2/#unsignedShort

Enumeration: DataTypeDefRdf

Explanation: Enumeration listing all RDF types

Set of: —

ID: https://admin-shell.io/aas/3/1/DataTypeDefRdf

Literal Explanation

rdf:langString String with a language tag

RDF requires IETF BCP 47[10] language tags. Simple two-letter language tags for locales like "de" conformant to ISO
639-1 are allowed, as well as language tags plus extension like "de-DE" for country code, dialect, etc. like in "en-US"
for English (United States) or "en-GB" for English (United Kingdom). IETF language tags are referencing ISO 639, ISO
3166 and ISO 15924.

96

https://www.w3.org/TR/xmlschema-2/#hexBinary
https://www.w3.org/TR/xmlschema-2/#int
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/xmlschema-2/#long
https://www.w3.org/TR/xmlschema-2/#negativeInteger
https://www.w3.org/TR/xmlschema-2/#nonNegativeInteger
https://www.w3.org/TR/xmlschema-2/#nonPositiveInteger
https://www.w3.org/TR/xmlschema-2/#positiveInteger
https://www.w3.org/TR/xmlschema-2/#short
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#unsignedShort
https://www.w3.org/TR/xmlschema-2/#unsignedInt
https://www.w3.org/TR/xmlschema-2/#unsignedLong
https://www.w3.org/TR/xmlschema-2/#unsignedShort

Figure 47. Built-In Types of XML Schema Definition 1.0 (XSD)[5]

Constraints

Introduction

This clause documents constraints that represent global invariants, i.e. constraints that cannot be assigned to a single
class.

In contrast, a class invariant is a constraint that must be true for all instances of a class at any time. They are
documented as part of the class specification.

Constraints for Referables and Identifiables

97

Constraint AASd-117: idShort of non-identifiable Referables not being a direct child of a SubmodelElementList shall be
specified.

Note: in other words (AASd-117), idShort is mandatory for all Referables except for referables being direct childs
of SubmodelElementLists and for all Identifiables.

Constraint AASd-022: idShort of non-identifiable referables within the same name space shall be unique (case-
sensitive).

Note: AASd-022 also means that idShorts of referables shall be matched sensitive to the case.

Constraints for Qualifiers

Constraint AASd-021: Every qualifiable shall only have one qualifier with the same Qualifier/valueType.

Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is equal to TemplateQualifier and the
qualified element inherits from HasKind, the qualified element shall be of kind _Template_ (_HasKind/kind_ =
Template)

Constraint AASd-129: If any Qualifier/kind value of a SubmodelElement/qualifier (attribute _qualifier_ inherited via
Qualifiable) is equal to TemplateQualifier, the submodel element shall be part of a submodel template, i.e. a
Submodel with Submodel/kind (attribute _kind_ inherited via HasKind) value equal to Template.

Constraints for Extensions

Constraint AASd-077: The name of an extension (Extension/name) within HasExtensions shall be unique.

Constraints for Asset-Related Information

Constraint AASd-116: "globalAssetId" (case-insensitive) is a reserved key for SpecificAssetId/name with the semantics
as defined in https://admin-shell.io/aas/3/1/AssetInformation/globalAssetId.

Note: AASd-116 is important to enable a generic search across global and specific asset IDs (e.g. in IDTA-
01002-3-0 discovery operations like GetAllAssetLinksById). In the future the constraint might become more strict
in stating that the name "globalAssetId" shall not be used as SpecificAssetId/name.

Constraints for Types

Constraint AASd-130: An attribute with data type "string" shall be restricted to the characters as defined in XML
Schema 1.0, i.e. the string shall consist of these characters only: ^[\x09\x0A\x0D\x20-\uD7FF\uE000-
\uFFFD\u00010000-\u0010FFFF]*$.

Constraint AASd-130 ensures that encoding and interoperability between different serializations is possible. See
https://www.w3.org/TR/xml/#charsets for more information on XML Schema 1.0 string handling.

Therefore, we need to restrict an attribute of data type 'string' to the characters that can be represented in any
exchange format and language. Otherwise, strings in other formats such as JSON could not be converted to XML.

The string contains only valid Unicode characters in the range of encoded in UTF-16 format. The character set of XML
includes (given as numerical code points and/or ranges in Unicode):

• 0x09: ASCII horizontal tab,

98

https://www.w3.org/TR/xml/#charsets

• 0x0A: ASCII linefeed (newline),

• 0x0D: ASCII carriage return.

• 0x20: ASCII space,

• 0x20 - 0xD7FF: all the characters of the Basic Multilingual Plane, and

• 0x00010000-0x0010FFFF: all the characters beyond the Basic Multilingual Plane (e.g., emoticons).

This leads to the following regular expression:

^[\x09\x0A\x0D\x20-\uD7FF\uE000-\uFFFD\u00010000-\u0010FFFF]*$

Where:

^: asserts the start of the string.

[\x09\x0A\x0D\x20-\uD7FF\uE000-\uFFFD\u00010000-\u0010FFFF]: defines a character class that allows various
Unicode characters, with the following elements:

• \x09: ASCII horizontal tab.

• \x0A: ASCII linefeed (newline). \x0D: ASCII carriage return.

• \x20: ASCII space. -: Represents a range. \uD7FF: The upper limit of the Basic Multilingual Plane (BMP) in UTF-
16.

• \uE000-\uFFFD: Represents the range of characters from the start of the supplementary planes up to the last valid
Unicode character (excluding surrogate pairs).

• \u00010000-\u0010FFFF: Represents the range of valid surrogate pairs used for characters beyond the BMP.

• *: Allows for zero or more occurrences of the characters within the character class.

• $: Asserts the end of the string.

[1] see: https://www.w3.org/TR/rdf11-concepts/

[2] Corresponds to xs:dateTime in XML Schema 1.0

[5] E.g. Property/valueType

[6] see https://www.w3.org/XML/Schema, https://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes

[7] see: https://www.w3.org/TR/rdf11-concepts/

[8] See https://www.w3.org/TR/rdf11-concepts/#xsd-datatypes

[9] Corresponds to xs:dateTimeStamp in XML Schema 1.1

[10] see https://tools.ietf.org/rfc/bcp/bcp47.txt

99

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/XML/Schema
https://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/#xsd-datatypes
https://tools.ietf.org/rfc/bcp/bcp47.txt

Data Specifications

Introduction

A data specification template specifies which additional attributes, which are not part of the metamodel, shall be added
to an element instance. Typically, data specification templates have a specific scope. For example, templates for
concept descriptions differ from templates for operations, etc. More than one data specification template can be
defined and used for an element instance. HasDataSpecification defines, which templates are used for an element
instance.

Figure 48 shows the concept of data specification for a predefined data specification conformant to IEC61360[3] that,
for example, can be used for concept descriptions for single properties.

Data Specification Templates - Part 1

Concept Descriptions - Part 1
«Template»

DataSpecification

+description:
MultiLanguageTextType[0..1]

+administration:
AdministrativeInformation[0..1]

+ id: Identifier
+dataSpecificationContent:
DataSpecificationContent

«abstract»
DataSpecificationContent

ConceptDescription
Identif iable

HasDataSpecification

+isCaseOf: Reference[0..*]

«Template»

DataSpecificationIec61360

+preferredName:
PreferredNameTypeIec61360

+shor tName:
ShortNameTypeIec61360[0..1]

+uni t : string[0..1]
+unitId: Reference[0..1]

+sourceOfDefinition:
string[0..1]

+symbol: string[0..1]
+dataType:

DataTypeIec61360[0..1]
+definition:

DefinitionTypeIec61360[0..1]
+valueFormat:

ValueFormatTypeIec61360[0..1]
+valueList: ValueList[0..1]

+value:
ValueTypeIec61360[0..1]

+levelType: LevelType[0..1]

may be used as
Data Specification

Figure 48. Core Elements of Using Data Specifications (non-normative)

The template introduced to describe the concept of a property, a value list, or a value is based on IEC 61360. Figure
48 also shows how concept descriptions and the predefined data specification templates are related to each other.

100

Data Specification Template Attributes

«Template»

DataSpecification

+description:
MultiLanguageTextType[0..1]

+administration:
AdministrativeInformation[0..1]

+ id: Identifier
+dataSpecificationContent:
DataSpecificationContent

«abstract»
DataSpecificationContent

Figure 49. Data Specification Templates

Note: the data specification templates do not belong to the metamodel of the Asset Administration Shell. In
serializations that choose specific templates, the corresponding data specification content may be directly
incorporated.

Predefined data specification templates including their ID can be found in the Part 3 series (IDTA-01003) of the
specification of the Asset Administration Shell.

It is required that a data specification template has a global unique ID so that it can be referenced via
HasDataSpecification/dataSpecification.

A template consists of the DataSpecificationContent containing the additional attributes to be added to the element
instance that references the data specification template, as well as meta information about the template itself. These
are two separate classes in UML.

Class: DataSpecification <<Template>>

Explanation: Data specification template

Inherits from: —

ID: https://admin-shell.io/aas/3/1/DataSpecification

Attribute ID

Explanation Type Card.

description https://admin-shell.io/aas/3/1/DataSpecification/description

Description of how and in which context the
data specification template is applicable;
can be provided in several languages.

MultiLanguageTextType 0..1

101

administration https://admin-shell.io/aas/3/1/DataSpecification/administration

Administrative information of the data
specification template

Note: some of the administrative
information like the version number
might need to be part of the
identification.

AdministrativeInformation 0..1

id https://admin-shell.io/aas/3/1/DataSpecification/id

The globally unique identification of the data
specification

Note: This identifier is used as value
for
HasDataSpecification/dataSpecificatio
n

Identifier 1

dataSpecificationContent https://admin-shell.io/aas/3/1/DataSpecification/dataSpecificationContent

The content of the template without
metadata

DataSpecificationContent 1

Class: DataSpecificationContent <<Template>><<abstract>>

Explanation: Data specification content is part of a data specification template and defines, which
additional attributes shall be added to the element instance that references the data
specification template and meta information about the template itself.

Inherits from: —

ID: https://admin-shell.io/aas/3/1/DataSpecificationContent

Attribute ID

Explanation Type Card.

[3] Since the data specification templates are specified and maintained in separate documents, these templates are considered as examples only,
although there is a similarity to existing data specifications.

102

Mappings (normative)

Technical Data Formats

This document specifies the Asset Administration Shell in a technology-neutral format, UML. Different data formats are
used or recommended to be used in the different life cycle phases of a product[3].

The Asset Administration Shell supports three widely used formats:

• XML

• JSON

• RDF

Note: the schemata for XML, JSON and RDF are part of https://github.com/admin-shell-io/aas-specs-
metamodel/tree/master.

Content Format Types

For different use case scenarios different formats are suitable to fulfill the needs. Besides technical formats like JSON
and XML also different content formats are available.

Table 6. Format Types

Format Explanation

Normal The standard serialization of the model element or child elements is applied.

Metadata Only metadata of an element or child elements is returned; the value is not.

Value Only the raw value of the model element or child elements is returned; it is commonly referred to as
ValueOnly-serialization.

Referenc
e

Only applicable to Referables. Only the reference to the found element is returned; potential child
elements are ignored.

Path Returns the idShort of the requested element and a list of idShortPath to child elements if the requested
element is a Submodel, a SubmodelElementCollection, a SubmodelElementList, a
AnnotatedRelationshipElement, or an Entity.

Encoding

Blobs require the following encoding: base64 string.

Text Serialization of Values of Type "Reference"

Grammar for Text Serialization Type "Reference"

Some mappings or serializations convert the type "Reference" into a single string. In this case, the following
serialization is required:

Grammar:

<Reference> ::= ["[" <ReferenceType> ["- " <referredSemanticId> " -"] "]"] <Key> {(", "
<Key> }*

103

https://github.com/admin-shell-io/aas-specs-metamodel/tree/master
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master

<ReferenceType> ::= "ExternalRef" | "ModelRef" value of AAS:Reference/type

<referredSemanticId> ::= <SemanticId> value of AAS:Reference/referredSemanticId value
of AAS:Reference/referredSemanticId

<SemanticId> ::= ["[" <ReferenceType> "]"] <Key> {(", " <Key> }*

<Key> ::= "(" <KeyType> ")" <KeyValue>

<KeyType> ::= value of AAS:Key/type

<KeyValue> ::= value of AAS:Key/value

Note 1: an IRI may also contain special symbols like "(", "," and "[". A blank is added before the new key or value
to distinguish beginning and end of a new key.

Note 2: ReferenceType is optional. It is clear from the first key in the key chain whether the reference is a global
or a model reference. Most examples in this document therefore do not use this prefix.

Examples for Text Serialization Type "Reference"

Valid Examples for External References:

(GlobalReference)0173-1#02-BAA120#008

[ExternalRef](GlobalReference)0173-1#02-BAA120#008

(GlobalReference)https://example.com/specification.html (FragmentReference)Hints

Valid Examples for Model References:

(ConceptDescription)0173-1#02-BAA120#008

[ModelRef](ConceptDescription)0173-1#02-BAA120#008

(Submodel)https://example.com/aas/1/1/1234859590, (Property)Temperature

(Submodel)https://example.com/aas/1/1/1234859590, (SubmodelElementList)Documents,
(SubmodelElementCollection)0, (MultiLanguageProperty)Title

[ModelRef- 0173-1#02-BAA120#008 -](Submodel)https://example.com/aas/1/1/1234859590,

104

(Property)Temperature

In the last example the semanticId of the property with idShort "Temperature" is expected to be "0173-1#02-
BAA120#008", the referredSemanticId.

For further examples including invalid examples please see Constraints for Referencing in Asset Administration Shells.

Embedded Data Specifications

The document series "Specification Asset Administration Shell" predefines data specifications that can be used within
an Asset Administration Shell to ensure interoperability (see Part 3 documents).

Consequently, some serializations or mappings support exactly the data descriptions defined in this specification,
although the metamodel as such is more flexible and would also support proprietary data specifications.

In the case of restricted use of data specifications, we speak of "embedded data specifications". Figure 50 explains
the realization: instead of a set of external global references to externally defined data specifications, a set of pairs
consisting of an external global reference to a data specification and the data specification content itself are directly
"embedded". Here, the data specification content belongs to the schema, while the data specification including its
content are not part of the schema in the general concept.

Data Specification Templates - Part 1Data Specification Handling - Serialization

«abstract»
HasDataSpecification

+dataSpecification:
Reference[0..*]

«Template»

DataSpecification

+description:
MultiLanguageTextType[0..1]

+administration:
AdministrativeInformation[0..1]

+ id: Identifier
+dataSpecificationContent:
DataSpecificationContent

«abstract»
DataSpecificationContent

«abstract»
HasDataSpecification

+embeddedDataSpecification:
EmbeddedDataSpecification[0..*]

EmbeddedDataSpecification

+dataSpecification:
Reference
+dataSpecificationContent:
DataSpecificationContent

«abstract»
DataSpecificationContent

Global reference to id
of DataSpecification

ConceptDescription
Identif iable

HasDataSpecification

+isCaseOf: Reference[0..*]

«external global
reference»

Figure 50. Realization of Embedded Data Specifications

Format "Metadata" (Metadata-Serialization)

Metadata objects are defined for scenarios where a client only wants to access the metadata of an object, but not the
value. Metadata objects are used to reduce the payload response to a minimum and to avoid the recursive traversing
through the data model when not needed. In many cases, a client is not interested in each child element or value of a
resource, but only in the resource itself.

A metadata object does not contain any additional fields in relation to its full object representation, only some fields
are left off. The left off fields are fields which could be requested by an own API call and may consist of a recursive or
potentially large substructure. The serialization of a metadata object is the same as for the original full object, but
without the left off fields.

105

For elements in the metamodel that are not listed in the table no "Metadata"-serialization is available.

Table 7. Metadata Attributes

Class Name Fields not available in metadata representation

Identifiables

AssetAdministrationShell assetInformation, submodels

Submodel submodelElements

SubmodelElements

SubmodelElementCollection value

SubmodelElementList value

Entity statements, globalAssetId, specificAssetId

BasicEventElement observed

Capability —

Operation —

DataElements

Property value, valueId

MultilanguageProperty value, valueId

Range min, max

ReferenceElement value

RelationshipElement first, second

AnnotatedRelationshipElement first, second, annotations

Blob value, contentType

File value, contentType

Example

The example shows a JSON serialization of an AssetAdministrationShell object in its full representation and how it
looks like in a metadata representation.

Note: for editorial reasons, some fields which are the same for both representations are omitted.

Table 8. AssetAdministrationShell JSON Serialization Example

106

{
 "idShort": "TestAssetAdministrationShell",
 "description": [...],
 "id": "idTestAAS",
 ...
 "derivedFrom": {...}
 "assetInformation": {...},
 "submodels": [...]
}

Table 9. AssetAdministrationShell Metadata JSON Serialization Example

{
 "idShort": "TestAssetAdministrationShell",
 "description": [...],
 "id": "idTestAAS",
 ...
 "derivedFrom": {...}
}

Format "Value" (Value-Only Serialization) in JSON

Overview of Value-Only Serialization Attributes

In many cases, applications using data from Asset Administration Shells already know the Submodel regarding its
structure, attributes, and semantics. Consequently, there is not always a need to receive the entire model information,
which can be requested separately via Content modifier set to Metadata (see IDTA-01002), in each request since it is
constant most of the time. Instead, applications are most likely only interested in the values of the modelled data.
Furthermore, having limited processing power or limited bandwidth, one use case of this format is to transfer data as
efficiently as possible. Semantics and data might be split into two separate architecture building blocks. For example, a
database would suit the needs for querying semantics, while a device would only provide the data at runtime. Two
separate requests make it possible to build up a user interface (UI) and show new upcoming values highly efficiently.

Values are only available for

• All subtypes of abstract type DataElement,

• SubmodelElementList and SubmodelElementCollection resp. for their included SubmodelElements,

• ReferenceElement,

• RelationshipElement + AnnotatedRelationshipElement,

• Entity,

• BasicEventElement,

• Submodel.

Capabilities are excluded from the serialization scope since only data containing elements are in the focus. They are
consequently omitted in the serialization.

The following rules shall be adhered to when serializing a submodel, a submodel element collection or a submodel
element list with the format "Value"[4]:

107

• A submodel or a submodel element collection is serialized as an unnamed JSON object.

• A submodel element list is serialized as an JSON array.

• A submodel element is considered a leaf submodel element if it does not contain other submodel elements. A leaf
submodel element follows the rules for the different submodel elements considered in the serialization, as
described below. If it is not a leaf element, the serialization rules must be transitively followed until the value is a
leaf submodel element.

• Reference is serialized in format "Normal".

• SpecificAssetId is serialized in format "Normal".

• SubmodelElements without a value are not serialized.

• For each submodel element within the submodel, the submodel element collection or submodel element list:

- Property is serialized as ${Property/idShort}: ${Property/value} where ${Property/value} is the JSON
serialization of the respective property’s value in accordance with the data type to value mapping (see Table
10).

- MultiLanguageProperty is serialized as named JSON object with ${MultiLanguageProperty/idShort} as the
name of the containing JSON property. The JSON object contains an array of JSON objects for each
language of the MultiLanguageProperty with the language as name and the corresponding localized string as
value of the respective JSON property. The language name is defined as two chars according to ISO 639-1.

- Range is serialized as named JSON object with ${Range/idShort} as the name of the containing JSON
property. The JSON object contains two JSON properties. The first is named "min". The second is named
"max". Their corresponding values are ${Range/min} and ${Range/max}.

- File and Blob are serialized as named JSON objects with ${File/idShort} or ${Blob/idShort} as the name of the
containing JSON property. The JSON object contains two JSON properties. The first refers to the content type
named ${File/contentType} resp. ${Blob/contentType}. The latter refers to the value named "value"
${File/value} resp. ${Blob/value}. The resulting ValueOnly object is indistinguishable whether it contains File or
Blob attributes. Therefore, the receiver needs to take the type of the target resource into account. Since the
receiver knows in advance if a File or a Blob SubmodelElement shall be manipulated, it can parse the
transferred Value-Only object accordingly as a File or Blob object. For Blobs the value attribute is optional (in
this case a Blob can be distinguished from a File).

- SubmodelElementCollection is serialized as named JSON object with ${SubmodelElementCollection/idShort}
as the name of the containing JSON property. The elements contained within the struct, i.e. the elements in
SubmodelElementCollection/value, are serialized according to their respective type with
${SubmodelElement/idShort} as the name of the containing JSON property.

- SubmodelElementList is serialized as a named JSON array with ${SubmodelElementList/idShort} as the
name of the containing JSON property. The elements in the JSON array, i.e. the elements in
SubmodelElementList/value, are the ValueOnly serializations of the elements contained in the
SubmodelElementList while preserving the order, i.e. index n in the JSON array is the ValueOnly serialization
of the element at index n of the SubmodelElementList.

- ReferenceElement is serialized as ${ReferenceElement/idShort}: ${ReferenceElement/value} where
${ReferenceElement/value} is the serialization of the Reference class in format "Normal" (see above).

- RelationshipElement is serialized as named JSON object with ${RelationshipElement/idShort} as the name of
the containing JSON property. The JSON object contains two JSON properties. The first is named "first". The
second is named "second". Their corresponding values are ${RelationshipElement/first} resp.
${Relationship/second}. The values are serialized according to the serialization of a ReferenceElement (see
above).

- AnnotatedRelationshipElement is serialized according to the serialization of a RelationshipElement (see
above). Additionally, a third named JSON object is introduced with "annotations" as the name of the containing
JSON property. The value is ${AnnotatedRelationshipElement/annotations}. The values of the array items are
serialized depending on the type of the annotation data element. Annotations are optional.

- Entity is serialized as named JSON object with ${Entity/idShort} as the name of the containing JSON property.
The JSON object contains four JSON properties. The first is named "statements" ${Entity/statements} and
contains an array of the serialized submodel elements according to their respective serialization mentioned in

108

this clause. The second is named "globalAssetId" and the third "specificAssetIds". Either a "globalAssetId"
value or a "specificAssetIds" value shall exist. The other attributes are optional. "specificAssetIds" is an array
of objects serializing SpecificAssetId. A single SpecificAssetId in the array corresponds to the serialization of
the SpecificAssetId class in format "Normal". The forth property is named "entityType" and contains a string
representation of ${Entity/entityType}. statements and the entityType are optional.

- BasicEventElement is serialized as named JSON object with ${BasicEventElement/idShort} as the name of
the containing JSON property. The JSON object contains one JSON property named "observed" with the
corresponding value of ${BasicEventElement/observed} as the standard serialization of the Reference class.

The following rules shall be adhered to when serializing a single submodel element with the format "Value":

• Property is serialized as ${Property/value} where ${Property/value} is serialized as described above.

• MultiLanguageProperty is serialized as JSON object. The JSON object is serialized as described above.

• Range is serialized as JSON object. The JSON object is serialized as described above.

• File and Blob are serialized as JSON objects. The JSON object is serialized as described above.

• ReferenceElement is serialized as ${ReferenceElement/value} where ${ReferenceElement/value} is is serialized
as described above.

• RelationshipElement is serialized as JSON object. The JSON object is serialized as described above.

• AnnotatedRelationshipElement is serialized as JSON object. The JSON object is serialized as described above.

• Entity is serialized as JSON object. The JSON object is serialized as described above.

• BasicEventElement is serialized as JSON object. The JSON object is serialized as described above.

Submodel elements defined in the submodel other than the ones mentioned above are not subject to the Value-Only
serialization.

Optional elements (like for example globalAssetId for an Entity submodel element) with no value shall be omitted in
the serialization.

Data type to value mapping

The serialization of submodel element values is described in the following table. The left column "Data Type" shows
the data types which can be used for submodel element values. The data types are defined according to the W3C
XML Schema (https://www.w3.org/TR/xmlschema-2/#built-in-datatypes and https://www.w3.org/TR/xmlschema-
2/#built-in-derived). "Value Range" further explains the possible range of data values for this data type. The right
column comprises related examples of the serialization of submodel element values.

Table 10. Mapping of Data Types in ValueOnly-Serialization[6]

Data
Type

JSO
N
Type

Value Range Sample Values

Core Types xs:string strin
g

Character string "Hello world", "¬¬¬¬¬¬¬¬ ¬¬¬¬¬",
"¬¬¬¬¬"

xs:boole
an

bool
ean

true, false true, false

xs:decim
al

num
ber

Arbitrary-precision decimal numbers -1.23,
126789672374892739424.543233,
100000.00, 210

109

https://www.w3.org/TR/xmlschema-2/#built-in-datatypes
https://www.w3.org/TR/xmlschema-2/#built-in-derived
https://www.w3.org/TR/xmlschema-2/#built-in-derived

Data
Type

JSO
N
Type

Value Range Sample Values

xs:integ
er

num
ber

Arbitrary-size integer numbers -1, 0,
1267896754323329387928374298374
29837429, 100000

IEEE-
floating-
point
numbers

xs:doubl
e

num
ber

64-bit floating point numbers -1.0, -0.0, 0.0, 234.567e8, 234.567e+8,
234.567e-8

xs:float num
ber

32-bit floating point numbers -1.0, -0.0, 0.0, 234.567e8, 234.567e+8,
234.567e-8

Time and
data

xs:date strin
g

Dates (yyyy-mm-dd) with or without
time zone

"2000-01-01","2000-01-01Z", "2000-01-
01+12:05"

xs:time strin
g

Times (hh:mm:ss.sss…) with or without
time zone

"14:23:00", "14:23:00.527634Z",
"14:23:00+03:00"

xs:dateT
ime

strin
g

Date and time with or without time zone "2000-01-01T14:23:00", "2000-01-
01T14:23:00.66372+14:00"

xs:dateT
imeStam
p

strin
g

Date and time with required time zone "2000-01-01T14:23:00.66372+14:00"

Recurring
and partial
dates

xs:gYear strin
g

Gregorian calendar year "2000", "2000+03:00"

xs:gMon
th

strin
g

Gregorian calendar month "--04", "--04+03:00"

xs:gDay strin
g

Gregorian calendar day of the month "---04", "---04+03:00"

xs:gYear
Month

strin
g

Gregorian calendar year and month "2000-01", "2000-01+03:00"

xs:gMon
thDay

strin
g

Gregorian calendar month and day "--01-01", "--01-01+03:00"

xs:durati
on

strin
g

Duration of time "P30D", "-P1Y2M3DT1H",
"PT1H5M0S"

xs:year
MonthD
uration

strin
g

Duration of time (months and years
only)

"P10M", 'P5Y2M"

xs:dayTi
meDurat
ion

strin
g

Duration of time (days, hours, minutes,
seconds only)

"P30D", 'P1DT5H", 'PT1H5M0S"

110

Data
Type

JSO
N
Type

Value Range Sample Values

Limited-
range
integer
numbers

xs:byte num
ber

-128…+127 (8 bit) -1, 0, 127

xs:short num
ber

-32768…+32767 (16 bit) -1, 0, 32767

xs:int num
ber

2147483648…+2147483647 (32 bit) -1, 0, 2147483647

xs:long num
ber

-9223372036854775808…+922337203
6854775807 (64 bit)

-1, 0, 9223372036854775807

xs:unsig
nedByte

num
ber

0…255 (8 bit) 0, 1, 255

xs:unsig
nedShor
t

num
ber

0…65535 (16 bit) 0, 1, 65535

xs:unsig
nedInt

num
ber

0…4294967295 (32 bit) 0, 1, 4294967295

xs:unsig
nedLong

num
ber

0…18446744073709551615 (64 bit) 0, 1, 18446744073709551615

xs:positi
veIntege
r

num
ber

Integer numbers >0 1,
7345683746578364857368475638745

xs:nonN
egativeI
nteger

num
ber

Integer numbers ¬0 0, 1,
7345683746578364857368475638745

xs:negat
iveInteg
er

num
ber

Integer numbers <0 -1,
-2348726384762837648273648726384
7

xs:nonP
ositiveInt
eger

num
ber

Integer numbers ¬0 -1, 0,
-93845837498573987498798987394

Encoded
binary data

xs:hexBi
nary

strin
g

Hex-encoded binary data "6b756d6f77617368657265"

xs:base
64Binary

strin
g

base64-encoded binary data
SGVsbG8sIFdvcmxkIQ==

111

Data
Type

JSO
N
Type

Value Range Sample Values

Miscellane
ous types

xs:anyU
RI

strin
g

Absolute or relative URIs and IRIs "http://customer.com/demo/aas/1/1/123
4859590",
"urn:example:company:1.0.0"

rdf:lang
String

strin
g

Strings with language tags "'Hello'@en", "'Hallo'@de"

Note: the examples are written in
RDF/Turtle syntax, and only
"Hello" and "Hallo" are the actual
values.

The following types defined by the XSD and RDF specifications are explicitly omitted for serialization - they are not
element of DataTypeDefXsd or DataTypeDefRdf: xs:language, xs:normalizedString, xs:token, xs:NMTOKEN, xs:Name,
xs:NCName, xs:QName, xs:ENTITY, xs:ID, xs:IDREF, xs:NOTATION, xs:IDREFS, xs:ENTITIES, xs:NMTOKENS,
rdf:HTML and rdf:XMLLiteral.

Note 1: due to the limits in the representation of numbers in JSON, the maximum integer number that can be
used without losing precision is 253-1 (defined as Number.MAX_SAFE_INTEGER). Even if the used data type
would allow higher or lower values, they cannot be used if they cannot be represented in JSON. Affected data
types are unbounded numeric types xs:decimal, xs:integer, xs:positiveInteger, xs:nonNegativeInteger,
xs:negativeInteger, xs:nonPositiveInteger and the bounded type xs:unsignedLong. Other numeric types are not
affected. [5]

Note 2: the ValueOnly-serialization uses JSON native data types, AAS in general uses XML Schema Built-in
Datatypes for Simple Data Types and ValueDataType. In case of booleans, JSON accepts only literals true and
false, whereas xs:boolean also accepts 1 and 0, respectively. In case of double, JSON number is used in
ValueOnly, but JSON number does not support INF/-INF (positive Infinity/negative), which is supported by
xs:double. Furthermore, NaN (Not a Number) is also not supported.

(See https://datatracker.ietf.org/doc/html/rfc8259#section-6)

Note 3: language-tagged strings (rdf:langString) containing single quotes (‘) or double quotes (") are not
supported.

Note 4: Roundtrip conversion from "Normal" to "ValueOnly" format may not result in the original payload because
"Normal" is using string whereas "ValueOnly" is using the JSON type closest to the xsd datatype (see Table 10).

Example Value-Only serialization for a Submodel

The following example shows the JSON Value-Only serialization for a Submodel with name "Example" and two direct
SubmodelElements "ProductClassifications" and "MaxRotationSpeed". "ProductClassifications" is represented by a
SubmodelElementList with SubmodelElementCollections as its elements. Each of the SubmodelCollections has two
mandatory elements "ProductClassificationSystem" and "ProductClassId" and one optional element
"ProductClassificationVersion". All of these elements have data type "xs:string". "MaxRotationSpeed" is a property
with data type "xs:int".

112

https://datatracker.ietf.org/doc/html/rfc8259#section-6

{ "ProductClassifications":
 [
 {
 "ProductClassificationSystem": "ECLASS",
 "ProductClassId": "27-01-88-77",
 "ProductClassificationVersion": "9.0"
 },
 {
 "ProductClassificationSystem": "IEC CDD",
 "ProductClassId": "0112/2///61987#ABA827#003"
 }
],
 "MaxRotationSpeed": 5000
}

The JSON Value-Only serialization for the element "ProductClassifications", a SubmodelElementList, within the
submodel above looks like this:

 [
 {
 "ProductClassificationSystem": "ECLASS",
 "ProductClassId": "27-01-88-77",
 "ProductClassificationVersion": "9.0"
 },
 {
 "ProductClassificationSystem": "IEC CDD",
 "ProductClassId": "0112/2///61987#ABA827#003"
 }
]

The JSON Value-Only serialization for the first element, a SubmodelElementCollection, within the
"ProductClassifications" list above looks like this:

{
 "ProductClassificationSystem": "ECLASS",
 "ProductClassId": "27-01-88-77",
 "ProductClassificationVersion": "9.0"
}

The JSON Value-Only serialization for the Property "MaxRotationSpeed" of the submodel above looks like this:

5000

The Format "Normal" in comparison to this Value-Only serialization of the property "MaxRotationSpeed" would look
like this:

{

113

 "idShort": "MaxRotationSpeed",
 "semanticId": {
 "type": "ExternalReference",
 "keys": [
 {
 "type": "GlobalReference",
 "value": "0173-1#02-BAA120#008"
 }
]
 },
 "modelType": "Property",
 "valueType": "xs:int",
 "value": "5000"
}

Example Value-Only serialization for a SubmodelElementCollection with non-serialized elements

The following SubmodelElementCollection in simplified notation

{
myCollection:
{
 "prop1": string,
 "capability1": Capability,
 "operation1": Operation,
 "list": SubmodelElementList(typeofElements:Operation)
}
}

is serialized to

{
 "prop1": "value of prop1"
}

in Format "Value".

Since Capability and Operation are not part of Value-Only serialization they are omitted. Also a List containing
elements that are omitted is omitted. This is even the case if the SubmodelElementList is mandatory.

Note: Similar handling is required in case there are access rules disallowing access to specific submodel
elements: The protected elements shall not be serialized.

Examples Value-Only serialization for all submodel element types

In the following examples for Value-Only serializations for all submodel element types are given.

114

Property

For a single Property named "MaxRotationSpeed", the value-Only payload is minimized to the following (assuming its
value is 5000):

 5000

SubmodelElementCollection

For a SubmodelElementCollection named "ProductClassification" or being part of a list "ProductionClassifications", the
Value-Only payload is minimized to the following, i.e. the name of the SubmodelElementCollection or its index in the
list is not part of the Value-Only serialization:

{
 "ProductClassificationSystem": "ECLASS",
 "ProductClassId": "27-01-88-77",
 "ProductClassificationVersion": "9.0"
}

SubmodelElementList

For a SubmodelElementList named "Authors" with string Properties as its value, the Value-Only payload is minimized
to the following (idShort of values within a SubmodelElementList are ignored):[6]:

[
 "Martha",
 "Jonathan",
 "Clark"
]

MultiLanguageProperty

For a MultiLanguageProperty the Value-Only payload is minimized to the following:

[
 {"de": "Das ist ein deutscher Bezeichner"},
 {"en": "That's an English label"}
]

Range

For a Range named "TorqueRange", the Value-Only payload is minimized to the following:

{
 "min": 3,
 "max": 15
}

115

ReferenceElement

For a ReferenceElement named "MaxRotationSpeedReference", the Value-Only payload is minimized to the following:

{
 "type": "ExternalReference",
 "keys": [
 {
 "type": "GlobalReference",
 "value": "0173-1#02-BAA120#008"
 }
]
}

File

For a File named "Document", the Value-Only payload is minimized to the following:

{
 "contentType": "application/pdf",
 "value": "SafetyInstructions.pdf"
}

Blob

For a Blob named "Library", there are two possibilities for the Value-Only payload. In case the Blob value - that can be
very large - shall not be part of the payload, the payload is minimized to the following[7]:

{
 "contentType": "application/octet-stream"
}

In the second case the Blob value is part of the payload.[8], there is an additional attribute containing the base64-
encoded value:

{
 "contentType": "application/octet-stream",
 "value": "VGhpcyBpcyBteSBibG9i"
}

RelationshipElement

For a RelationshipElement named "CurrentFlowsFrom", the Value-Only payload is minimized to the following:

{
 "first": {
 "type": "ModelReference",
 "keys": [
 {

116

 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/1/1234859590"
 },
 {
 "type": "Property",
 "value": "PlusPole"
 }
]
 },
 "second": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/0/1234859123490"
 },
 {
 "type": "Property",
 "value": "MinusPole"
 }
]
 }
}

AnnotatedRelationshipElement

For an AnnotatedRelationshipElement named "CurrentFlowFrom", with an annotated Property-DataElement
"AppliedRule", the Value-Only-payload is minimized to the following:

{
 "first": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/1/1234859590"
 },
 {
 "type": "Property",
 "value": "PlusPole"
 }
]
 },
 "second": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/0/1234859123490"
 },
 {

117

 "type": "Property",
 "value": "MinusPole"
 }
]
 },
 "annotations": [
 {
 "AppliedRule": "TechnicalCurrentFlowDirection"
 }
]
}

Entity

For an Entity named "MySubAssetEntity", the Value-Only-payload is minimized to the following:

{
 "statements": {
 "MaxRotationSpeed": 5000
 },
 "entityType": "SelfManagedEntity",
 "globalAssetId": {
 "type": "ExternalReference",
 "keys": [
 {
 "type": "GlobalReference",
 "value": "http://customer.com/demo/asset/1/1/MySubAsset"
 }
]
 }
}

BasicEventElement

For a BasicEventElement named "MyBasicEvent", the Value-Only-payload is minimized to the following:

{
 "observed": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/1/1234859590"
 },
 {
 "type": "Property",
 "value": "MaxRotation"
 }
]
 }

118

}

JSON-Schema for the Value-Only Serialization

The following JSON-Schema represents the validation schema for the ValueOnly-Serialization of submodel elements.
This holds true for all submodel elements mentioned in the previous clause except for SubmodelElementCollections.
Since SubmodelElementCollections are treated as objects containing submodel elements of any kind, the integration
into the same validation schema would result in a circular reference or ambiguous results ignoring the actual validation
of submodel elements other than SubmodelElementCollections. Hence, the same validation schema must be applied
for each SubmodelElementCollection within a submodel element hierarchy. In this case, it may be necessary to create
a specific JSON-Schema for the individual use case. The SubmodelElementCollection is added to the following
schema for completeness and clarity. It is, however, not referenced from the SubmodelElementValue-oneOf
-Enumeration due to the reasons mentioned above.

See Annex ValueOnly-Serialization Example for an example that validates against this schema

{
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "title": "ValueOnly-Serialization-Schema",
 "$id": "https://admin-shell.io/schema/valueonly/json/V3.0",
 "definitions": {
 "AnnotatedRelationshipElementValue": {
 "type": "object",
 "properties": {
 "first": {
 "$ref": "#/definitions/ReferenceValue"
 },
 "second": {
 "$ref": "#/definitions/ReferenceValue"
 },
 "annotations": {
 "$ref": "#/definitions/ValueOnly"
 }
 },
 "additionalProperties": false
 },
 "BasicEventElementValue": {
 "type": "object",
 "properties": {
 "observed": {
 "$ref": "#/definitions/ReferenceValue"
 }
 },
 "required": [
 "observed"
],
 "additionalProperties": false
 },
 "BlobValue": {
 "type": "object",
 "properties": {
 "contentType": {

119

 "type": "string",
 "minLength": "1",
 "maxLength": "128"
 },
 "value": {
 "type": "string",
 "minLength": 1
 }
 },
 "additionalProperties": false
 },
 "BooleanValue": {
 "type": "boolean",
 "additionalProperties": false
 },
 "EntityValue": {
 "type": "object",
 "properties": {
 "statements": {
 "$ref": "#/definitions/ValueOnly"
 },
 "entityType": {
 "enum": [
 "SelfManagedEntity",
 "CoManagedEntity"
]
 },
 "globalAssetId": {
 "type": "string"
 },
 "specificAssetIds": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/SpecificAssetIdValue"
 }
 }
 },
 "additionalProperties": false
 },
 "FileValue": {
 "type": "object",
 "properties": {
 "contentType": {
 "type": "string",
 "minLength": "1",
 "maxLength": "128"
 },
 "value": {
 "type": "string",
 "minLength": "1",
 "maxLength": "2048"
 }

120

 },
 "additionalProperties": false
 },
 "Identifier": {
 "type": "string"
 },
 "Key": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "type",
 "value"
],
 "additionalProperties": false
 },
 "LangString": {
 "type": "object",
 "patternProperties": {
 "^[a-z]{2,4}(-[A-Z][a-z]{3})?(-([A-Z]{2}|[0-9]{3}))?$": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 "MultiLanguagePropertyValue": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/LangString"
 },
 "additionalProperties": false
 },
 "NumberValue": {
 "type": "number",
 "additionalProperties": false
 },
 "OperationRequestValueOnly": {
 "inoutputArguments": {
 "$ref": "#/definitions/ValueOnly"
 },
 "inputArguments": {
 "$ref": "#/definitions/ValueOnly"
 },
 "timestamp": {
 "type": "string",
 "pattern": "^-?(([1-9][0-9][0-9][0-9]+)|(0[0-9][0-9][0-9]))-((0[1-9])|(1[0-2]))-

121

((0[1-9])|([12][0-9])|(3[01]))T(((([01][0-9])|(2[0-3])):[0-5][0-9]:([0-5][0-9])(\\.[0-
9]+)?)|24:00:00(\\.0+)?)(Z|\\+00:00|-00:00)$"
 },
 "additionalProperties": false
 },
 "OperationResultValueOnly": {
 "executionState": {
 "type": "string",
 "enum": ["Initiated", "Running", "Completed", "Canceled",
 "Failed", "Timeout"]
 },
 "inoutputArguments": {
 "$ref": "#/definitions/ValueOnly"
 },
 "outputArguments": {
 "$ref": "#/definitions/ValueOnly"
 },
 "additionalProperties": false
 },
 "PropertyValue": {
 "oneOf": [
 {
 "$ref": "#/definitions/StringValue"
 },
 {
 "$ref": "#/definitions/NumberValue"
 },
 {
 "$ref": "#/definitions/BooleanValue"
 }
]
 },
 "RangeValue": {
 "type": "object",
 "properties": {
 "min": {
 "$ref": "#/definitions/RangeValueType"
 },
 "max": {
 "$ref": "#/definitions/RangeValueType"
 }
 },
 "additionalProperties": false
 },
 "RangeValueType": {
 "oneOf": [
 {
 "$ref": "#/definitions/StringValue"
 },
 {
 "$ref": "#/definitions/NumberValue"
 },

122

 {
 "$ref": "#/definitions/BooleanValue"
 }
]
 },
 "ReferenceElementValue": {
 "$ref": "#/definitions/ReferenceValue"
 },
 "ReferenceValue": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string",
 "enum": ["ModelReference", "ExternalReference"]
 },
 "keys": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/Key"
 }
 }
 },
 "additionalProperties": false
 },
 "RelationshipElementValue": {
 "type": "object",
 "properties": {
 "first": {
 "$ref": "#/definitions/ReferenceValue"
 },
 "second": {
 "$ref": "#/definitions/ReferenceValue"
 }
 },
 "additionalProperties": false
 },
 "SpecificAssetIdValue": {
 "type": "object",
 "patternProperties": {
 "(.*?)": {
 "type": "string"
 }
 }
 },
 "StringValue": {
 "type": "string",
 "additionalProperties": false
 },
 "SubmodelElementCollectionValue": {
 "$ref": "#/definitions/ValueOnly"
 },
 "SubmodelElementListValue": {

123

 "type": "array",
 "items": {
 "$ref": "#/definitions/SubmodelElementValue"
 }
 },
 "SubmodelElementValue": {
 "oneOf": [
 {
 "$ref": "#/definitions/BasicEventElementValue"
 },
 {
 "$ref": "#/definitions/RangeValue"
 },
 {
 "$ref": "#/definitions/MultiLanguagePropertyValue"
 },
 {
 "$ref": "#/definitions/FileBlobValue"
 },
 {
 "$ref": "#/definitions/ReferenceElementValue"
 },
 {
 "$ref": "#/definitions/RelationshipElementValue"
 },
 {
 "$ref": "#/definitions/AnnotatedRelationshipElementValue"
 },
 {
 "$ref": "#/definitions/EntityValue"
 },
 {
 "$ref": "#/definitions/PropertyValue"
 },
 {
 "$ref": "#/definitions/SubmodelElementCollectionValue"
 },
 {
 "$ref": "#/definitions/SubmodelElementListValue"
 }
]
 },
 "ValueOnly": {
 "propertyNames": {
 "pattern": "^[A-Za-z_][A-Za-z0-9_-]*$"
 },
 "patternProperties": {
 "^[A-Za-z_][A-Za-z0-9_-]*$": {
 "$ref": "#/definitions/SubmodelElementValue"
 }
 },
 "additionalProperties": false

124

 }
 }
}

Format "Path" (idShortPath Serialization) in JSON

To get only the idShortPaths of a submodel element hierarchy, the serialization format is specified in terms of an
idShortPath notation to be returned in an JSON array. The notation differs depending on whether a
SubmodelElementCollection or a SubmodelElementList is present. In the first case, the submodel element’s idShort is
separated by "." (dot) from top level down to child level. In the second case, square brackets with an index "[<Index>]"
are appended after the idShort of the containing SubmodelElementList. In any case, the first item of any idShortPath
is the idShort of the requested element.

Note: Although idShort may be defined for elements within a SubmodelElementList, only the index shall be used
within the idShortPath serialization.

Grammar:

<idShortPath> ::= <idShort> {["." <idShort> | "["<Index>"]"]}*

<Index> ::= <Zero> | <PositiveNumber>

<PositiveNumber> ::= <NonZeroDigit>{<Digit>}*
<Digit> ::= <Zero> | <NonZeroDigit>
<Zero> ::= "0"
<NonZeroDigit> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

In the following example, a request for idShort paths targeting a MySubmodelElementCollection with
SerializationModifier level = deep, the list of idShort paths is returned as follows:

EXAMPLE Submodel

Submodel: MySubmodel

• Property: MyTopLevelProperty

• SMC: MySubmodelElementCollection

- Property: MySubProperty1

- Property: MySubProperty2

- SMC: MySubSubmodelElementCollection

· Property: MySubSubProperty1

· Property: MySubSubProperty2

- SML: MySubSubmodelElementList1

· Property: "MySubTestValue1"

· Property: "MySubTestValue2"

- SML: MySubSubmodelElementList2

· SML: MySubSubmodelElementList3

· SMC: MySubmodelElementCollectionInSML3

125

· Property: "MySubTestValue3"

idShortPaths for SMC MySubmodelElementCollection within the Submodel above:

[
 "MySubmodelElementCollection",
 "MySubmodelElementCollection.MySubProperty1",
 "MySubmodelElementCollection.MySubProperty2",
 "MySubmodelElementCollection.MySubmodelElementCollection",
 "MySubmodelElementCollection.MySubmodelElementCollection.MySubProperty1",
 "MySubmodelElementCollection.MySubmodelElementCollection.MySubProperty2",
 "MySubmodelElementCollection.MySubSubmodelElementList1",
 "MySubmodelElementCollection.MySubSubmodelElementList1[0]",
 "MySubmodelElementCollection.MySubSubmodelElementList1[1]",
 "MySubmodelElementCollection.MySubSubmodelElementList2",
 "MySubmodelElementCollection.MySubSubmodelElementList2[0]",
 "MySubmodelElementCollection.MySubSubmodelElementList2[0][0]",
 "MySubmodelElementCollection.MySubSubmodelElementList2[0][1]",
 "MySubmodelElementCollection.MySubSubmodelElementList2[0][0].MySubTestValue3"
 "MySubmodelElementCollection.MySubSubmodelElementList2[0][1].MySubTestValue3"
]

"MySubmodelElementCollection.MySubSubmodelElementList1" has exactly 2 values in this example and
"MySubmodelElementCollection.MySubSubmodelElementList2" has 1 element in the first row and two in the second
row.

Note: There is no idShortPath for Identifiables because idShort is optional for Identifiables.

Format "Reference"

In some use cases only the (model) reference to the object is needed in the first place.

References are possible for Referables, only. Potential child elements are ignored.

For references see [spec-metamodel::referencing:::referencing-in-aas].

Format "Reference" - Example in JSON

 {
 "keys": [
 {
 "type": "AssetAdministrationShell",
 "value": "urn:an-example08:f3f73640"
 }
],
 "type": "ModelReference"
 }

Format "Normal" in XML

The metamodel of an Asset Administration Shell needs to be serialized for import and export scenarios. XML is a

126

possible serialization format.

eXtensible Markup Language (XML[9]) is very well suited to derive information from an IT system, e.g. to process it
manually and then feed it into another IT system. XML provides the possibilities of scheme definitions, which can be
used to syntactically validate the represented information in each step.

While there are many possibilities to represent a model of an Asset Administration Shell in XML, we provide our
"official" XML schema definition (XSD) to foment interoperability between different tools and systems.

Below we explain in more detail how our schema is constructed, point the user to the examples and finally give some
background information on our particular schema design.

Note 1: the xml schema (.xsd files) is maintained in the repository "aas-specs" of the GitHub project admin-shell-
io [51] in folder schemas\xml

Note 2: example files can be found in the repository "aas-specs" in the GitHub project admin-shell-io [51] in
folder : schemas\xml\examples

Top-Level Structure

The root element of our XML is an XML element representing the instance of Environment. This environment contains
three aggregations, corresponding to all Identifiable classes:

• AssetAdministrationShell’s,

• Submodel’s, and

• ConceptDescription’s.

To simplify exploration of the XML data, identifiable instances are only available at the level of the environment, and
nowhere else.

We now continue to see how to serialize the instances and their properties.

XML Mapping Rules

Building blocks of an XML document include only XML elements, XML attributes and text enclosed in an element.
XML elements can nest children elements. Using these building blocks, we map an AAS model to XML.

UML Property to XML Element

Before we look into how to represent instances of classes, let us start bottom-up and see first how individual
properties are represented.

We represent each property of a class with an XML element whose name corresponds to the property in the
metamodel. The name is given in camel-case where all abbreviations are left as capitalized
(dataSpecificationIec61360 instead of dataSpecificationIEC61360).

It is common in UML to use singular form for aggregations, which is the case for the metamodel. This is, however, in
contrast to programming code, where plural form for sequences is common. Since the naming of XML elements has
direct influence on the programming code, we name the properties in plural form diverging from the name in the
metamodel. For example, submodelElements instead of submodelElement in case of Submodel/submodelElement
property in the metamodel.

In cases where plural form made no sense for a property, we kept it as-is in singular form (e.g., isCaseOf). The full list
of exceptions is available as code in aas-core-meta.

127

https://www.w3.org/TR/xmlschema-0/
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/xml
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/xml/examples
https://www.w3schools.com/xml/xml_elements.asp
https://www.w3schools.com/xml/xml_attributes.asp
https://www.w3schools.com/xml/xml_elements.asp
https://github.com/aas-core-works/aas-core-meta/blob/02712deeff530a75fda99aee25961aa4ea38a420/tests/test_v3.py#L1069

Why no XML attributes?

While some metamodel properties are indeed very apt to be succinctly represented as XML attributes, we decided not
to use XML attributes at all for three reasons.

First, the XML attribute must be a string, and therefore does not allow for structured data to be represented with it. As
the metamodel evolves, we need to be able to gracefully evolve the schema with as little breakages as possible. An
XML attribute puts a limit in so far that an attribute can only be represented as string. Moreover, as the schema
evolves, making diff’s is important to trace the changes. This is much harder when the attributes switch from an XML
attribute to an XML element.

Second, many classes contain a mix of primitive properties and structured properties. If we allowed XML attributes,
the former would be represented as XML attributes, while the latter would be represented as XML elements. This
leads to confusion where the writer is forced to go back and forth in the specification, and always double-check
whether a property should be represented as an XML attribute or an XML element.

Third, we automatically generate the schema from a machine-readable metamodel representation (see Background
below). The mix of XML attributes and elements would have complicated the code and prolonged the development.

We finally decided that the drawbacks outlined above outweighed the advantage in form of succinct representation.

Optional Properties

If a property has cardinality 0..1 or 0..* and is not specified in the instance, the element is simply omitted.

Properties of Simple Data Types

The property values given in the metamodel as simple data types (see Primitive Data Types) are serialized as text
enclosed in the XML element corresponding to the property. Please see Why no XML attributes? on why we do not
serialize them as XML attributes.

The byte arrays (BlobType in metamodel) are serialized as Base64-encoded text.

Simple type rdf:langString is serialized as if it were a proper metamodel class with properties language and text. See
the following Instances of Classes as Property Values about how to serialize instances of classes in general as that
section directly applies to rdf:langString.

Instances of Classes as Property Values

To serialize instances of metamodel classes as values of properties, we need to nest them somehow within the XML
element corresponding to the property. This is not as trivial as it seems.

If the property type is a concrete or abstract class with descendants, the deserializer needs to know the exact concrete
class at the time of de-serialization. However, this information is obviously missing in the metamodel. For example, the
property Submodel/submodelElement tells the deserializer that its items are instances of SubmodelElement, but the
deserializer does not know which concrete deserialization method to apply to understand the nested XML data: is it
Property , Range or some other descendant of SubmodelElement?

Therefore, the information about the concrete type of the serialized instance must be encoded somehow in XML when
the type in the metamodel is too vague. This nugget of information is usually called a discriminator (e.g., see OpenAPI
3 specification on polymorphism).

On the other hand, when the metamodel mandates the type of property as a concrete class without descendants, the
deserializer needs no additional information as the deserialization method is given by the metamodel. There is thus no
need to include the discriminator in the serialization, and a redundant discriminator would only clutter the XML
document.

We therefore distinguish two serializations of instances: one with discriminator, and one without, respectively.

128

https://en.wikipedia.org/wiki/Diff
https://swagger.io/docs/specification/data-models/inheritance-and-polymorphism/
https://swagger.io/docs/specification/data-models/inheritance-and-polymorphism/

Instances Serialized with Discriminator

We use the XML element named according to the concrete class at the serialization as the discriminator. The
properties of the instance are nested below this discriminator XML element.

Let us make an example. The example will be agnostic of the particular metamodel version, so that it can age well
across different versions. We fantasize a metamodel class SomeAbstractClass and assume it has two descendant
classes, SomeConcreteClass and AnotherConcreteClass. Let us assume yet another class, YetAnotherClass, entails
the property someProperty of type SomeAbstractClass.

Here is how the XML structure corresponding to YetAnotherClass/someProperty would look like in this fantasized
case, where the value is an instance of SomeConcreteClass:

<someProperty>
 <SomeConcreteClass>
 <!--
 Serialized properties of SomeConcreteClass
 -->
 </SomeConcreteClass>
</someProperty>

If the value is an instance of AnotherConcreteClass, the serialization becomes:

<someProperty>
 <AnotherConcreteClass>
 <!--
 Serialized properties of AnotherConcreteClass
 -->
 </AnotherConcreteClass>
</someProperty>

The abstract class, SomeAbstractClass, does not show up in the serialization at all, as it is redundant information.

While this approach is succinct in terms of additional XML elements, but it comes with a caveat. Namely, if we
introduce descendants to AnotherConcreteClass, the property someProperty becomes polymorph, and we need to
introduce backwards-incompatible schema changes to allow for the [discriminator].

Instances Serialized without Discriminator

If the concrete type of the property at deserialization is unambiguous by the metamodel, we omit the discriminator to
reduce the clutter. The instance is simply serialized as a sequence of XML elements corresponding to its properties.

Let us fantasize yet another example, similar to the one in Instances of Classes as Property Values. We will again
draw an example such that it is agnostic of metamodel version for better evolution of this document. Assume a class
SomeClass with a property SomeClass/someProperty. Now imagine the type of someProperty to be the class
AnotherClass. The class AnotherClass has properties AnotherClass/anotherProperty and
AnotherClass/yetAnotherProperty. The class AnotherClass has no descendants, so the concrete type of
SomeClass/someProperty is unambiguous.

Here is how the XML structure would look like:

<someProperty>
 <anotherProperty>

129

 <!-- ... -->
 </anotherProperty>
 <yetAnotherProperty>
 <!-- ... -->
 </yetAnotherProperty>
</someProperty>

The type information about AnotherClass is omitted, as the type of the SomeClass/someProperty is fixed in the
metamodel.

Properties as Aggregations

Many properties in the metamodel do not represent a single value (be it primitive or structured as a class), but
aggregate instances of metamodel classes. For example, Submodel/submodelElement aggregates instances of
SubmodelElement’s.

If we just concatenated all the properties of the instances, we would not know which property belongs to which
instance (or such distinction would be complicated). We need a delimiter!

Following the approach described in Instances Serialized with Discriminator, we delimit the instances simply by
nesting them beneath the discriminator elements. If the type of the list items is a concrete class, we nest beneath the
discriminator element regardless.

For example, here is an XML snippet of an example submodel elements, where the first element is a Property, the
second one is a Range and the third is a Property:

<submodel>
 <submodelElements>
 <!-- First element -->
 <property>
 <!-- ... some properties ... -->
 </property>

 <!-- Second element -->
 <range>
 <!-- ... another properties ... -->
 </range>

 <!-- Third element -->
 <property>
 <!-- ... yet another properties ... -->
 </property>
 </submodelElements>
</submodel>

We explicitly forbid empty lists in XML to avoid confusion about properties of cardinality 0..*. Namely, an empty list is
semantically equal to an omitted property (according to the metamodel). Thus, the XML element representing an
aggregation must be omitted if the aggregation is empty.

The following snippet is therefore invalid:

<submodel>

130

 <submodelElements/>
 <!-- other properties -->
</submodel>

… and should be written as:

<submodel>
 <!-- other properties -->
</submodel>

Order of the Properties

We fixed the order of the properties to match the metamodel for readability.

This is reflected in usage of xs:sequence throughout the XML schema.

Enumerations

Enumerations are serialized according to the exact values of enumeration literals in the metamodel as text.

For example, the enumeration literal EntityType/CoManagedEntity is serialized as CoManagedEntity, while the literal
Direction/input as input.

Embedded Data Specifications

There is an abstract definition of data specifications as templates in the metamodel (see Data Specification
Templates). This definition does not specify, though, how to access them from within an Environment, which is a
requirement for many systems. To address this practical issue, the metamodel indicates that they should be
embedded in serializations (see Embedded Data Specifications).

We therefore add additional XML element, named embeddedDataSpecifications, in the XML representations of
HasDataSpecification class, and omit dataSpecification property by design. The embedded data specifications are
serialized just as all the other classes of the metamodel, following the procedure outlined above.

Namespace

The XML elements representing the AAS model are explicitly required to live in our namespace. The namespace
corresponds to the version of the metamodel.

For example, the serialization for the metamodel V3.1 lives in the namespace https://admin-shell.io/aas/3/1.

Structure of the Schema

XML schemas tend to grow very complex, very quickly. Our schema is no exception. While we described so far how an
XML document looks like for a concrete AAS model, let us briefly give you an overview of the schema beneath it.

At this point, we only outline its structure in broad brushes. Please refer to the actual file schema/xml/AAS.xsd for
more details.

For each class, we define a xs:group which lays out the order (as a nested xs:sequence) and type of the XML
elements corresponding to the properties of the class. The inheritance is dealt by nesting an additional xs:group
element within the sequence with the ref attribute.

The individual properties are defined with xs:element in the xs:sequence.

131

https://admin-shell.io/aas/3/1
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/xml/AAS.xsd

For example:

<xs:group
 name="administrativeInformation">
 <xs:sequence>
 <xs:group
 ref="hasDataSpecification"/>
 <xs:element
 name="version"
 minOccurs="0"
 maxOccurs="1">
 <xs:simpleType>
 <xs:restriction
 base="xs:string">
 <xs:minLength
 value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <!-- ... More elements come here ... -->
 </xs:sequence>
</xs:group>

For each class, we define a xs:complexType, name it with an _t prefix and refer the complex type to the corresponding
group. The complex types are necessary so that we can use them to specify aggregations.

For example, here is the definition of submodel_t:

<xs:complexType
 name="submodel_t">
 <xs:sequence>
 <xs:group
 ref="submodel"/>
 </xs:sequence>
</xs:complexType>

Here it is used in the definition of the aggregation:

<xs:group
 name="environment">
 <!-- ... -->
 <xs:element
 name="submodels"
 minOccurs="0"
 maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element
 name="submodel"
 type="submodel_t"

132

 minOccurs="1"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- ... -->
</xs:group>

If a class has one or more descendants, we define an xs:group with the _choice suffix. This is necessary so that we
can enforce a closed set of concrete classes at the de/serialization. In particular, we want to ensure that the
discriminator is given correctly (see Instances Serialized with Discriminator).

Here is an example of a choice:

<xs:group
 name="submodelElement_choice">
 <xs:choice>
 <!-- ... -->
 <xs:element
 name="property"
 type="property_t"/>
 <xs:element
 name="range"
 type="range_t"/>
 <!-- ... -->
 </xs:choice>
</xs:group>

Here the choice is enforced in another group:

<xs:group
 name="submodel">
 <xs:sequence>
 <!-- ... -->
 <xs:element
 name="submodelElements"
 minOccurs="0"
 maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:group
 ref="submodelElement_choice"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:group>

133

Examples

Examples of the XML serializations can be found in schemas/xml/examples/ folder.

Background

Handwritten Schema

When we started with the project, the schema had been manually written. One or two schema designers would sit
down, follow the book and translate it into XML schema by best effort. This allowed for a lot of artistic freedom, but
eventually caused problems due to mismatches with other serializations or internal inconsistencies. Especially as the
metamodel evolved, maintaining the schema and keeping it up-to-date with the metamodel proved to be difficult.

Generated Schema

While the handwritten schema is arguably elegant, the maintenance is too demanding. Therefore, we developed a
schema generator based on the machine-readable representation of the metamodel. The generator is provided in aas-
core-codegen project, while the metamodel lives in aas-core-meta.

This allowed us to evolve the XML schema more quickly while keeping it in sync with other serialization schemas and
SDKs. However, we had to give up on elegant parts of the schema, and had to straightjacket the schema into form that
can be programmatically generated. For example, all properties are serialized as XML elements, and we could not use
XML attributes.

Format "Normal" in JSON

JSON[10] (JavaScript Object Notation) is a further serialization format that serializes the metamodel of an Asset
Administration Shell for import and export scenarios.

Additionally, JSON format is used to describe the payload in the http/REST API for active Asset Administration Shells
[37].

Since JSON is a very versatile format, there are many ways how we could map an AAS model to it. Below we explore
our particular design of the serialization schema based on JSON schema 2019-09 , and explain in detail the rules how
we mapped the AAS metamodel to it.

Note 1: the JSON schema (.json files) is maintained in the repository "aas-specs" of the GitHub project admin-
shell-io [51] in folder schemas\json

Note 2: example files can be found in the repository "aas-specs" in the GitHub project admin-shell-io [51] in
folder schemas\json\examples

Top-Level Structure

The root of our serialization is a JSON object representing the instance of Environment. This environment contains
three aggregations, corresponding to all identifiable classes:

• AssetAdministrationShell’s,

• Submodel’s, and

• ConceptDescription’s.

The JSON properties of the environment correspond to these three aggregations.

134

https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/xml/examples
https://github.com/aas-core-works/aas-core-codegen
https://github.com/aas-core-works/aas-core-codegen
https://github.com/aas-core-works/aas-core-meta
https://json-schema.org/specification-links.html#2019-09-formerly-known-as-draft-8
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/json
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/json/examples

To simplify exploration of the JSON data, identifiable instances are only available at the level of the environment, and
nowhere else.

JSON Mapping Rules

Classes to JSON definitions

For each class of the AAS metamodel, we provide a definition in the JSON schema. The instances of the classes,
abstract and concrete alike, are modeled as JSON objects.

UML properties to JSON properties

The class properties of the metamodel (attributes and aggregations) correspond directly to JSON properties.

Optional attributes, i.e., the attributes with the cardinality 0..1, are modeled as non-required properties.

Aggregations, i.e., the properties with the cardinality 0.., 1.. etc., are modeled as JSON arrays.

We explicitly forbid empty JSON arrays to avoid confusion about properties which have cardinality 0..*. Namely, an
empty array is semantically equal to an omitted attribute (according to the metamodel). Thus, the JSON property
representing an aggregation attribute must be omitted if the aggregation is empty.

In UML, it is the convention to name associations and aggregations in singular form. The cardinality is to be taken into
account to decide on whether there are none, a single or several elements in the corresponding association or
aggregation. In JSON, it is best practice to use plural form for array in class properties. The singular name is used for
its discriminator (see section on discriminators). Typically, the plural name is derived by just adding an "s" to the name.
For example, submodelElements instead of submodelElement in case of Submodel class.

If plural form made no sense for a property, we kept it as-is (e.g., isCaseOf). The full list of exceptions is available as
code in aas-core-meta.

Primitive attribute values

The UML specification uses XSD types. For the mapping of XSD to JSON types please refer to Format "Value" (Value-
Only Serialization) in JSON.

There are the following exceptions:

Property/value and Range/min and Range/max are mapped to a JSON string. The type it needs to be converted to by
the data consumer is declared in Property/valueType or Range/valueType, resp.

Primitive type BlobType (group of `byte`s) is mapped to a JSON string with base64 encoding.

Note: in valueOnly Format value has the JSON type as declared in Property/valueType taking the mapping of XSD to
JSON types into account.

Hint: Round-Trip Conversions

Round-trip conversions XML to JSON to XML or RDF to JSON to RDF may not result in the original file.

The result of a model saved as XML is different to the model saved as JSON. For example, if the user typed in 1 for a
boolean UML attribute (e.g. for SubmodelElementList /orderRelevant) in the editor, saved the model as JSON and
opened it again, she would suddenly see true instead of 1 (since the JSON library would silently convert 1 to a JSON
boolean true).

Inheritance

The inheritance relationships between the classes are modeled using allOf composition. While JSON schema knows

135

https://json-schema.org/understanding-json-schema/structuring.html#defs
https://json-schema.org/understanding-json-schema/reference/object.html
https://json-schema.org/understanding-json-schema/reference/object.html#properties
https://json-schema.org/understanding-json-schema/reference/object.html#required-properties
https://json-schema.org/understanding-json-schema/reference/array.html
https://github.com/aas-core-works/aas-core-meta/blob/02712deeff530a75fda99aee25961aa4ea38a420/tests/test_v3.py#L1069
https://github.com/aas-core-works/aas-core-meta/blob/02712deeff530a75fda99aee25961aa4ea38a420/tests/test_v3.py#L1069
https://json-schema.org/understanding-json-schema/reference/boolean.html
https://json-schema.org/understanding-json-schema/reference/boolean.html
https://json-schema.org/understanding-json-schema/reference/combining.html#allof

no inheritance, we enforce through allOf that all the properties of the parent are defined in the descendants.

Discriminator

Many attributes in the metamodel refer to an abstract class. When we de-serialize such attributes, we need to know
the concrete class at runtime, since otherwise the de-serialization algorithm would not know how to interpret the
properties of the object.

For example, consider the attribute Submodel which contains instances of SubmodelElement. When the de-serializer
encounters the property submodelElements as an array and starts de-serializing its items, how can it know which
constructor to call to parse the item? This necessary nugget of information is commonly called ``discriminator'' (e.g.,
see OpenAPI 3 specification on polymorphism).

We define the discriminator for our serialization as an additional property, modelType , which do not correspond to any
attribute in the metamodel. Every class which has one or more descendants will have the discriminator modelType in
its definition.

When a deserializer needs to de-serialize an instance of an abstract class, it can do so by dispatching the de-
serialization to the appropriate de-serialization method based on modelType.

Enumerations

The enumerations of the metamodel are directly mapped to enumerated values in JSON schema. Each enumeration
is defined separately, and we do not in-line enumerations for readability.

Enumerations which are not directly used in the schema are omitted. For example, subsets of KeyTypes are omitted
since only KeyTypes is used to define value of an attribute.

Embedded Data Specifications

The metamodel defines data specifications in abstract (see Data Specification Templates). However, the metamodel
omits data specifications in an Environment, and data specifications are intentionally non-identifiable.

For practical applications, we need to access them somehow. Therefore, the metamodel mandates to embed them in
serializations (see Embedded Data Specifications).

We consequently embed the data specifications by adding embeddedDataSpecifications property to the definition
corresponding to HasDataSpecification, and deliberately omit the attribute HasDataSpecification/dataSpecification in
the schema.

Examples

Examples of the JSON serializations can be found in the GitHub Repository in the /schemas/json/examples folder.

Background

From Manual Transcription …

The serialization to and from JSON changed over the course of different versions of the metamodel. Originally, the
schema had been manually designed, where a group of authors combed "the book" and manually transcribed it to
JSON schema. This was obviously error-prone as it often caused mismatches between other serializations (e.g., XML
and RDF), contained inconsistencies etc.

… to Automatic Generation

We eventually moved over to generate the serialization schemas based on a single-point-of-truth. The current source
is aas-core-meta, a domain-specific Python representation of the metamodel. The schemas are generated using aas-

136

https://swagger.io/docs/specification/data-models/inheritance-and-polymorphism/
https://json-schema.org/understanding-json-schema/reference/generic.html#enumerated-values
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/json/examples
https://github.com/aas-core-works/aas-core-meta
https://github.com/aas-core-works/aas-core-codegen

core-codegen, a translating tool which transpiles aas-core-meta into different schemas and other targets such as
SDKs.

While this approach reduced the rate of errors significantly, it also imposed certain limits on our schema design. For
example, the classes and enumerations are now programmatically mapped to JSON definitions, allowing for no
exceptions. Where we could in-line some of them for better readability, we are now forced to stick with the
programmatic definitions.

Format "Normal" in RDF

The Resource Description Framework (RDF) [32] is the recommended standard of the W3C to unambiguously model
and present semantic data. RDF documents are structured in the form of triples, consisting of subjects, relations, and
objects. The resulting model is often interpreted as a graph, with the subject and object elements as the nodes and
the relations as the graph edges.

RDF is closely related to web standards, illustrated by the fact that all elements are encoded using (HTTP-)IRIs. As a
common practice, the provision of additional information at the referenced location of an RDF entity directly allows the
interlinking of entities[11] based on the web. This process – following links in order to discover related information – is
called dereferencing a resource and is supported by any browser or web client. Connecting distributed data sources
through the web in the described manner is referred to by the term "Linked Data". Connecting the available resources
and capabilities of linked data with the expressiveness of the Asset Administration Shell is one motivation for the RDF
serialization.

In addition, RDF is the basis of a wide range of logical inference and reasoning techniques. Vocabularies like RDF
Schema (RDFS) and the Web Ontology Language (OWL) combine the graph-based syntax of RDF with formal
definitions and axioms. This allows automated reasoners to understand the relation between entities to some extent
and draw conclusions.

Combining both features, the RDF mapping of the Asset Administration Shell can provide the basis for complex
queries and requests. SPARQL, the standard query language for the Semantic Web, can combine reasoning features
with the integration of external data sources. In order to benefit of these abilities, the Asset Administration Shell
requires a clear scheme of its RDF representation. In the following, the necessary transformation rules are presented,
followed by an illustration of relevant parts of the scheme and an example.

The complete data model (rdf-ontology.ttl) together with the schema (shacl-schema.ttl) are listed in this GitHub
Repository in the /schemas/rdf folder.

Note 1: the RDF scheme/OWL files (.ttl files) are maintained in the repository "aas-specs" of the GitHub project
admin-shell-io [51] in folder /schemas/rdf

Note 2: example files can be found n the repository "aas-specs" of the GitHub project admin-shell-io [51] in folder
/schemas/rdf/examples

RDF Mapping Rules

The concepts of the RDF and the derived RDF serialization of the AAS are explained by the mapping rules. These
rules are implemented by the generators used to create the ontology and shacl files based on the independent project
aas-core-works. The main design rules the following:

• The default serialization format is Turtle - also for the ontology and the shapes. However, several equivalent
serializations exist for RDF. Among them, the Turtle syntax is regarded as the most appropriate compromise
between readability and tool-support. Other formats (RDF/XML, JSON-LD, N3, etc.) can be used without any loss
of information.

• Shape Graphs represent the validation schema. The data model itself is an RDF ontology. As RDF itself is
following the open-world-assumption, SHACL constraints are necessary in order to enable schema validation.

137

https://github.com/aas-core-works/aas-core-codegen
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf/rdf-ontology.ttl
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf/shacl-schema.ttl
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf/examples
https://github.com/aas-core-works/aas-core-codegen
https://github.com/aas-core-works
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf/shacl-schema.ttl
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf/rdf-ontology.ttl
https://www.w3.org/TR/shacl/

Similarly to XSD for XML, the SHACL format can be used to describe constraints (called shapes) of RDF graphs.

• Every entity is encoded as either an IRI or a Literal. RDF uses IRIs for both entities and relations. If no IRI is
predefined, a globally unique IRI is generated. Primitive values are encoded as Typed Literals.

• Entities are enhanced with well-known RDF attributes. Interoperability of concepts and attributes is the main
advantage of the RDF mapping. Therefore, applying common attributes (rdf:type (similar to modelType
discriminator in JSON), rdfs:label, and rdfs:comment) enables the usage of standard tools and interfaces.

• Repeating elements are described once and then linked using their IRI identifier. If a distinct element appears
more than one time in the original model but in a different context, for instance in more than one submodel, the
RDF entity represents the combination of all attributes.

• Multilanguage Strings are split into distinct language strings (rdf:langString). Objects are expected to contain a
singular information entity, and the currently available tools would not recognize the AAS LangString pattern.

• Multiple object values are represented by repeating the property, one for each value object.

• Abstract AAS classes are modeled in the ontology, nevertheless, using them leads to validation errors in the
shapes. RDF does not contain a concept for abstract classes, therefore custom checks using SPARQL queries are
supplied.

Example Overview

RDF is often regarded as a graph model, as it provides the flexibility to interlink entities at any stage. In the following,
the ./examples/Complete_Example.ttl[complete example] is originally provided in Turtle but accompanied with
visualizations of the represented graph (see Figure 51): Attributes referencing non-literal values are shown as directed
links while Literal values are drawn together with the corresponding entity itself. In order to increase readability, the
namespace declaring sections are omitted. The complete example with all namespaces can be found in the example
folder. One can see the additionally inserted triples for rdf:type, rdfs:label, and rdfs:comment as determined by Rule 4.
The first attribute states the instance’ class. The second provides its commonly used name, for instance based on the
idShort attribute. rdfs:comment supplies a short description about the regarded entity, based on the description value.
The generally available tools, for instance the open source tool Protégé, render these attributes and display the correct
class hierarchy, render the elements with their labels or supply short explanations based on the comments.

Figure 51. Simplified graph of the core classes in the example

A comprehensive set of generated examples is also provided in the GitHub Repository, always containing a complete
and a minimal version of each class. The files have been created using the aas-core3.0-testgen project to simplify the
maintenance process and to stick directly to the efforts made at aas-core-meta.

[3] The word "data formats" is used as shortcut and includes the use of conceptual advantages such as information models, schemes, transmission
protocols, etc.

[4] see SerializationModifier in Part 2 - IDTA-01002 - of the Specification of the Asset Administration Shell

[5] cf. https://eclipse-esmf.github.io/samm-specification/2.0.0/payloads.html (with adjustments for +/-INF, NaN, and language-typed literal support)

[6] The Value-Only serialization of the product classification example can be seen above

[7] for the API a special JSON query parameter, the SerializationModifier Extent, is set to WithoutBLOBValue for this case (see IDTA-01002)

[8] in this case the JSON query parameter SerializationModifier Extent is set to WithBlobValue (see IDTA-01002)

[9] see: https://www.w3.org/TR/2008/REC-xml-20081126/

[10] see: https://tools.ietf.org/html/rfc8259 or https://www.ecma-international.org/publications/standards/Ecma-404.htm

[11] Note: entity as a generic term and entity as a specific submodel element subtype need to be distinguished.

138

https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf/examples
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf/examples
https://protege.stanford.edu
https://github.com/admin-shell-io/aas-specs-metamodel/tree/master/schemas/rdf/examples/generated
https://github.com/aas-core-works/aas-core3.0-testgen
https://github.com/aas-core-works/aas-core-meta
https://eclipse-esmf.github.io/samm-specification/2.0.0/payloads.html
https://www.w3.org/TR/2008/REC-xml-20081126/
https://tools.ietf.org/html/rfc8259
https://www.ecma-international.org/publications/standards/Ecma-404.htm

Summary and Outlook

This document has defined the metamodel for the structural viewpoint of the Asset Administration Shell using the
technology-neutral modelling language UML.

Several serializations and mappings are offered for the Asset Administration Shell based on this specification:

• XML, mainly used for file exchange between partners via the exchange format .aasx,

• JSON, mainly used for API definition, but also for file exchange as alternative to XML, and

• RDF for reasoning.

Additional parts of the document series cover (see [37]):

• interfaces and APIs for accessing the information of Asset Administration Shells (access, modify, query, and
execute information and active functionality), Part 2; the payload of these APIs is based on the definitions of the
information model in this document, Part 1,

• predefined data specification templates (Part 3 series), for example for concept descriptions of properties
conformant to IEC61360 (Part 3a),

• the infrastructure, which hosts and interconnects multiple Asset Administration Shells, implementing registry,
discovery services, endpoint handling, and more,

• security aspects including access control, Part 4.

139

Annex

Concepts AAS

General

Annex A provides general information about sources of information and relevant concepts for the Asset Administration
Shell. Some of these concepts are explained in a general manner. Some concepts are update in order to reflect actual
design decisions. No new concepts are introduced. Thus, this clause can be seen as a fully informative annex to the
specifications of the Administration Shell.

Relevant Sources and Documents

The following documents were used to identify requirements and concepts for the Administration Shell:

• implementation strategy of Plattform Industrie 4.0 [1][2],

• aspects of the research roadmap in application scenarios [7],

• continuation of the application scenarios [8],

• structure of the Administration Shell [4] [19],

• examples for the Administration Shell of the Industrie 4.0 Components [6],

• technical overview "Secure identities" [9],

• security of the Administration Shell [15],

• relationships between I4.0 components – composite components and smart production [13].

Note 1: the global Plattform Industrie 4.0 glossary can be found at: https://www.plattform-
i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html

Note 2: the online library of the Plattform Industrie 4.0 can be found at: https://www.plattform-
i40.de/PI40/Navigation/EN/Downloads-News/downloads-news.html

Note 3: the online library of the Industrial Digital Twin Association can be found at:
https://industrialdigitaltwin.org/en/content-hub/downloads

Basic Concepts for Industry 4.0

Industry 4.0 describes concepts and definitions for the domain of smart manufacturing. For Industry 4.0, the term
asset, being any "object which has a value for an organization", is of central importance [2] [21]. Industry 4.0 assets
can take almost any form, e.g. a production system, a product, a software installation, intellectual properties, or even
human resources.

According to [21], the "reference architecture model Industry 4.0 (RAMI4.0) provides a structured view of the main
elements of an asset using a level model consisting of three axes […]. Complex interrelationships can thus be broken
down into smaller, more manageable sections by combining all three axes at each point in the asset’s life to represent
each relevant aspect."

Assets shall have a logical representation in the "information world", e.g. managed by IT systems. Consequently, an
asset needs a precise identification as an entity, shall have a "specific state within its life (at least a type or instance)",
shall have communication capabilities, shall be represented by means of information and shall be able to provide
technical functionality [21]. This logical representation of an asset is called Administration Shell [4]. The combination of

140

https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html
https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html
https://www.plattform-i40.de/PI40/Navigation/EN/Downloads-News/downloads-news.html
https://www.plattform-i40.de/PI40/Navigation/EN/Downloads-News/downloads-news.html
https://industrialdigitaltwin.org/en/content-hub/downloads

asset and Administration Shell forms the so-called I4.0 component. In international papers [19], the term smart
manufacturing replaces the term Industry 4.0.

As far as the large variety of assets in Industry 4.0 are concerned, the Asset Administration Shell allows these assets
to be handled in the same manner within the information world. This reduces complexity and allows for scalability.
Additional motivation can be found in [2] [4] [7] [8].

Figure 52. Important Concepts of Industry 4.0 attached to the Asset [2] [21]

The Concept of Properties

According to [20], the "IEC 61360 series provides a framework and an information model for product dictionaries. The
concept of product type is represented by 'classes' and the product characteristics are represented by 'properties'".

Standardized data elements are an example for such properties. The definitions can be found in a range of
repositories, such as IEC CDD (common data dictionary) or ECLASS. The definition of a property (aka standardized
data element type, property type) associates a worldwide unique identifier with a definition, which is a set of well-
defined attributes. Relevant attributes for the Administration Shell are, amongst others, the preferred name, the
symbol, the unit of measure, and a human-readable textual definition of the property.

141

Figure 53. Exemplary Definition of a Property the IEC CDD

The instantiation of such a definition (just 'property', property instance) typically associates a value to the property.
This mechanism makes it possible to convey semantically well-defined information to the Administration Shell.

Note: Industry 4.0 and smart manufacturing in general will require many properties, which are beyond the current
scope of IEC CDD, ECLASS, or other repositories. It is expected that these sets of properties will be introduced,
as more and more domains are modelled and standardized (see next clause).

The Concept of Submodels

"The Administration Shell is the standardized digital representation of the asset, corner stone of the interoperability
between the applications managing the manufacturing systems" [19]. Hence, it should provide a minimal but sufficient
description according to the different application scenarios in Industry 4.0 [7] [8]. Many different (international)
standards, consortia and manufacturer specifications can already contribute to this description [19].

As the figure shows, information from many different domains can be associated with a respective asset, and many
different properties are required to be represented in Administration Shells of future I4.0 components. The
architectural principle "separation of concerns" is supported by submodels.

142

Figure 54. Examples of Different Domains Providing Properties for Submodels of the Administration Shell

The Administration Shell is made up of a series of submodels [4]. These represent different aspects of the asset
concerned. For example, they may contain a description relating to safety or security [15] but they could also outline
various process capabilities such as drilling or installation [6].

From an interoperability perspective, the goal is to standardize only a single submodel for each aspect/ technical
domain. For example, it will be possible to find a drilling machine by searching for an Administration Shell containing a
submodel "Drilling" with appropriate properties. Certain properties can then be assumed to exist for communication
between different I4.0 components. In our example, a second submodel "energy efficiency" could make sure the
drilling machine is able to cut its electricity consumption when out of operation.

Note: a side benefit of the Administration Shell will be to simplify the update of properties from product design
(and in particular system design) tools, update properties from real data collected in the instances of assets,
improve traceability of assets along the life cycle, and help certify assets from data.

Basic Structure of the Asset Administration Shell

The document on the structure of the Asset Administration Shell [4] [19] presents a rough, logical view of the Asset
Administration Shell’s structure. The Asset Administration Shell – shown in blue in the following figure – comprises
different sets of information. Both the asset and the Administration Shell are identified by a globally unique identifier. It
comprises a number of submodels, which characterize the Asset Administration Shell.

143

Figure 55. Basic Structure of the Asset Administration Shell

Properties, data, and functions will contain information that not every partner within a value-added network or even
within an organizational unit should be able to access; its integrity and availability should be guaranteed. Therefore,
the structure of the Administration Shell shall be able to handle aspects such as access protection, visibility, identity,
and rights management, confidentiality, and integrity. Information security needs to be respected and has to be aligned
with an overall security concept. Security implementation must go together with the implementation of other
components of an overall system.

Each submodel contains a structured quantity of properties that can refer to data and functions. A standardized format
based on IEC 61360-1/ ISO 13584-42 is envisaged for the properties. Property value definition shall follow the same
principles as ISO 29002-10 and IEC 62832-2. Data and functions may be available in various complementary formats.

The properties of all the submodels therefore result in a constantly readable key information directory of the
Administration Shell and hence of the I4.0 component. To enable binding semantics, Administration Shells, assets,
submodels, and properties must all be clearly identified. For identification of these element the following types of
global identifiers are allowed: IRDIs (used for example in ISO TS 29002-5, ECLASS and IEC CDD) and IRIs
(Internationalized Resource Identifier, used for example in ontologies).

It should be possible to filter elements of the Administration Shell or submodels according to different given views (see
example C.4 in [19]). This facilitates different perspectives or use cases to access the Administration Shell’s
information.

144

How Are New Identifiers Created?

Following the different identification types from Which Identifiers for Which Elements?, it can be stated that:

a. IRDIs are assumed to already exist due to an external specification and standardization process in the creation of
a certain Administration Shell. To bring such IRDI identifiers to life, please refer to Clause 5 of this document [4].

b. URIs and URLs can easily be created by developers when forming a certain Administration Shell. All they need is
a valid-authenticated URL, for example of the company. They also need to make sure that the domain (e.g. admin-
shell.io) appended to the host’s name is reserved in a semantically unique way for these identifiers. This way, each
developer can create an arbitrary URI or URL by combining the host name and some chosen path, which only
needs to be unique in the developer’s organization.

c. Custom identifiers can also be easily formed by developers. They only need to make sure that internal custom
identifiers can be clearly distinguished from (a) or (b).

d. Local identifiers can also be created on the fly. They have to be unique within their namespace.

Best Practice for Creating URI Identifiers

The approach for semantics and interaction for I4.0 components [18] suggests the use of the following structure (see
Table 11) for URIs[3], which is slightly modified here. The idea is to always structure URIs following a scheme of
different elements. However, this is just a recommendation and by no means mandatory.

Table 11. Proposed Structure for URIs

Element Description Syntax
component

Organization Legal body, administrative unit, or company issuing the ID A

Organizational
subunit/document
ID/document subunit

Sub entity in organization above, released specification, or publication of
organization above

P

Submodel/domain ID Submodel of functional or knowledge-wise domain of asset or
Administration Shell, which the identifier belongs to

P

Version Version number in line with release of specification or publication of
identifier

P

Revision Revision number in line with release of specification or publication of
identifier

P

Property/element ID Property or further structural element ID of the Administration Shell P

Instance number Individual numbering of the instances within release of specification or
publication

P

In the table, syntax component "A" refers to authority of RFC 3986 (URI) and namespace identifier of RFC 2141
(URN); "P" refers to path of RFC 3986 (URI) and namespace specific string of RFC 2141 (URN).

Grammar:

<AAS URI> ::= <scheme> ":" <authority> [<path>]

<scheme> ::= a valid URI scheme

145

<authority> ::= Organization

<path> ::= <subunit> <domain> <release> <element>

<subunit> ::= \{ ("/" | ":") <Organizational Subunit/Document ID/Document subunit> }*

<domain> ::= [("/" | ":") <Submodel / Domain-ID>

<release> ::= [("/" | ":") <Version> [("/" | ":") <Revision>]*]

<element> ::= [("/" | ":" | "#") \{(<Property/Element-ID> | <Instance number>)}*]

Using this scheme, valid URNs and URLs can be both created as URIs. The latter are preferred for Administration
Shells, as functionality (such as REST services) can be bound to the identifiers. Examples of such identifiers are given
in Table 12.

Table 12. Example URN and URL-based Identifiers of the Asset Administration Shell

Identifier Examples

Administration Shell ID urn:com.example:demo.aas.1.1#73BA55B11FKDAVO

http://example.com/demo/aas/1/1/73BA55B11FKDAVO

Submodel ID (Template) urn:GMA:7.20:contractnegotiation:1:1

http://www.vdi.de/gma720/contractnegotiation/1/1

Submodel ID (Instance) urn:GMA:7.20:contractnegotiation:1:1#001

http://www.vdi.de/gma720/contractnegotiation/1/1#001

ID of type or Concept
Description of a Property etc.

urn:PROFIBUS:PROFIBUS-PA:V3-02:Parameter:1:1:MaxTemp

https://www.zvei.de/SG2/aas/1/1/demo11232322/maxtemp

Property, etc.

(not used by metamodel)

urn:PROFIBUS:PROFIBUS-PA:V3-02:Parameter:1:1:MaxTemp#0002

http://purl.org/dc/terms/created

https://admin-shell.io/idta/CarbonFootprint/ProductCarbonFootprint/1/2

Note: the last row of Table 12 is only used for completion; the metamodel does not foresee own unique identifiers
for property/parameter/status instances.

General Topics

Introduction

Before specifying the information metamodel of the Asset Administration Shell, some general topics relevant for the
Asset Administration Shell are explained.

Types and Instances describes some general aspects of handling type and instance assets.

Identification of Elements explains the very important aspects of identification in the context of the Asset

146

Administration Shell.

Matching Strategies provides matching strategies for semantic identifiers and references.

Submodel Instances and Templates explains the difference between submodel instances and templates.

Events discusses aspects of event handling.

Types and Instances

Life Cycle with Type Assets and Instance Assets

Industry 4.0 utilizes an extended understanding of assets, comprising elements such as factories, production systems,
equipment, machines, components, produced products and raw materials, business processes and orders, immaterial
assets (such as processes, software, documents, plans, intellectual property, standards), services, human personnel,
etc..

The RAMI4.0 model [3] defines a generalized life cycle concept derived from IEC 62890. The basic idea is to
distinguish between possible types and instances for all assets within Industry 4.0. This makes it possible to apply the
type/instance distinction for all elements such as material type/material instance, product type/product instance,
machine type/ machine instance, etc. Business-related information is handled on the 'business' layer of the RAMI4.0
model. The business layer also covers order details and workflows, again for both type and instance assets.

Note 1: to distinguish asset type and asset instance, the term asset kind is used in this document. The three
different relationship classes between assets, especially type assets and instance assets, explained below show
why the distinction is so important. The attribute "derivedFrom" in the metamodel is used to explicitly state a
relationship between assets that are being derived from one another. Other relationships are not explicitly
supported by the metamodel of the Asset Administration Shell, but they can be modelled via the
"RelationshipElement" submodel element type.

=== Note 2: Besides asset types and asset instances there als other kinds of assets (see enumeration AssetKind).
However, in the following examples we do not consider them. ===

Table 13 gives an overview of the different life cycle phases and the role of type assets and instance assets as well as
their relationship in these phases.

This important relationship should be maintained throughout the life of the instance assets. It makes it possible to
forward updates from the type assets to the instance assets, either automatically or on demand.

Table 13. Life Cycle Phases and Roles of Type and Instance Assets

Asset Kind Life Cycle Phase Description

Type asset Development Valid from the ideation/conceptualization to the first
prototypes/test. The 'type' of an asset is defined; distinguishing
properties and functionalities are defined and implemented. All
(internal) design artefacts associated with the type asset are
created, such as CAD data, schematics, embedded software.

Usage/
Maintenance

Ramping up production capacity. The 'external' information
associated to the asset is created, such as technical data sheets,
marketing information. The selling process starts.

Instance asset Production Instance assets are created/produced, based on the type asset
information. Specific information about production, logistics,
qualification, and test are associated with the instance assets.

147

Asset Kind Life Cycle Phase Description

Usage/
Maintenance

Usage phase by the purchaser of the instance assets. Usage
data is associated with the instance asset and might be shared
with other value chain partners, such as the manufacturer of the
instance asset.

Also included: maintenance, re-design, optimization, and de-
commissioning of the instance asset. The full life cycle history is
associated with the asset and might be archived/shared for
documentation.

The second class of relationships are feedback loops/information within the life cycle of the type asset and instance
asset. For product assets, for example, information on usage and maintenance of product instances may be used to
improve product manufacturing as well as the design of the (next) product type.

The third class of relationships are feedforward/information exchange with assets of other asset classes. For example,
sourcing information from business assets can influence design aspects of products; or the design of the products
affects the design of the manufacturing line.

Note 3: the NIST model [49] provides an illustration of the second/third class of relationships.

A fourth class of relationships consists between assets of different hierarchy levels. For example, these could be the
(dynamic) relationships between manufacturing stations and currently produced products. They could be also the
decomposition of production systems in physical, functional, or safety hierarchies. In this class of relationships,
automation equipment is seen as a complex, interrelated graph of automation devices and products, performing
intelligent production and self-learning/optimization tasks.

Details and examples for composite I4.0 Components can be found in [12]. A composite I4.0 Component is the
combination of a complex asset and its Asset Administration Shell. The hierarchy, typically a Bill of Material (BOM) but
also any other relationship between different assets, can be represented in one of its submodels.

Note 4: for submodels representing the Bill of Material of a complex asset, the metamodel not only provides the
possibility to define relationships (via the submodel element RelationshipElement, see above), it also explicitly
supports the representation of another asset (via the submodel element Entity). The term "Entity" is chosen as
superordinate concept in this context and refers to either an asset or another item that is not an asset but may be
part of a more complex item or asset.

Asset Administration Shells Representing Type Assets and Instance Assets

An Asset Administration Shell typically either represents a type asset or an instance asset. Typically, there is a
relationship between instance assets and a type asset. However, not every instance asset is required to have a
corresponding type asset.

Figure 56 gives an example of how to handle type assets and their derived instance assets. The attribute "assetKind"
indicates whether the Asset Administration Shell (denoted by the ":AAS" UML notation for a class instance of the class
"AAS") represents a type asset or an instance asset. Additionally, attributes are added to show that the attributes of
type asset and instance assets typically differ from each other.

148

«AAS»
 http: / /T0215551AA.com:AAS

manufacturer =
ExampleManufacturer

globalAssetId = 0215551AA
assetKind = Type

valueRange = -40 °C / 140
°C

productClass = Component
description (EN) = precise

and fast temperature
measurement

«AAS»
 http://T1.com:AAS

assetKind = Instance
globalAssetId =
0215551AAA_T1

measuredTemperature = 60

«AAS»
 http://T2.com:AAS

assetKind = Instance
globalAssetId =
0215551AAA_T2

measuredTemperature =
100

Reference

+der ivedFrom

Reference

+der ivedFrom

Figure 56. Example: Asset Administration Shells for Type and Instance Assets

Note 1: the example is simplified for ease of understanding and only roughly complies with the metamodel as
specified in Specification (normative). The ID handling is simplified as well: the names of the classes correspond
to the unique global identifier of the Asset Administration Shells.

Note 2: in the context of Plattform Industrie 4.0, types and instances typically refer to "type assets" and "instance
assets". When referring to types or instances of an Asset Administration Shell, this is explicitly denoted as "Asset
Administration Shell types" and "Asset Administration Shell instances" to not mix them up. Asset Administration
Shell types are synonymously used with the term "Asset Administration Shell template".

Note 3: please refer to Terms and Definitions for the IEC definition of types and instances. Within the scope of
this document, there is no full equivalency between these definitions and the type/instance concepts of object-
oriented programming (OO).

There shall be a concrete type asset of a temperature sensor and two uniquely identifiable physical temperature
sensors of this type. The intention is to provide a separate Asset Administration Shell for the type asset as well as for
every single instance asset.

In the example, the first sensor has the unique ID "0215551AAA_T1" and the second sensor has the unique ID
"0215551AAA_T2". "0215551AAA_T1" and "0215551AAA_T2" are the global asset IDs of the two assets, i.e. sensors.
The Asset Administration Shell for the first sensor has the unique URI "http://T1.com" and the Asset Administration
Shell for the second sensor has the unique URI "http://T2.com". The asset kind of both is "Instance". The example
shows that the measured temperature at operation time of the two sensors is different: for T1 it is 60 °C, for T2 it is 100
°C. The relationship "derivedFrom" of the two Asset Administration Shells "http://T1.com " and "http://T2.com" with

149

Asset Administration Shell "http://T0215551AA.com" will be explained later.

Note 1: even though the HTTP scheme is used for the identifier, please be aware that these identifiers are logical
ones. Identifiers do not have to be URLs. At the same time, URLs used as identifiers do not have to refer to
accessible content.

Note 2: the physical unit can be obtained by the semantic reference of the element "measuredTemperature". This
is not shown in the example for simplicity reasons.

These two instance assets share a lot of information on the type asset (in this example a sensor type), for which an
own Asset Administration Shell is created. The unique ID for this Asset Administration Shell is
"http://T0215551AA.com", the unique ID of the sensor type is "0215551AA". The asset kind is "Type" and not
"Instance". The information shared by all instances of this temperature sensor type is the product class
(="Component"), the manufacturer (="ExampleManufacturer"), the English Description (="precise and fast temperature
measurement"), and the value range ("-40 °C / 140 °C").

Now the two Asset Administration Shells of the two instance assets may refer to the Asset Administration Shell of the
type asset "0215551AA" using the relationship attribute "derivedFrom".

Note 1: in the UML sense, "attribute" refers to the property or characteristic of a class (instance).

Note 2: if a specific type asset exists, it typically exists in time before the respective instance assets.

Note 3: the term Asset Administration Shell is used synonymously with the term Asset Administration Shell
instance. An Asset Administration Shell may be realized based on an Asset Administration Shell type. Asset
Administration Shell types are out of the scope of this document.

Note 4: in the domain of the Internet of Things (IoT), instance assets are typically denoted as "Things" whereas
type assets are denoted as "Product".

Asset Administration Shell Types and Instances

In the previous clause, type assets and instance assets were explained. The obvious question now is how to
harmonize Asset Administration Shells and Asset Administration Shell types. The example in Figure 57 shows that the
attributes "globalAssetId" and "assetKind" as well as the global Asset Administration Shell identifier (id, represented as
name of the class) are present for all Asset Administration Shells. However, if there is no standard, the semantics of
"id", "globalAssetId" or "kind" are not clear, although they are the same for all Asset Administration Shells. It is also not
clear, which of the attributes are mandatory and which are specific for the asset (type or instance), as illustrated in
Figure 57.

This is the purpose of this document: the definition of a metamodel that defines which attributes are mandatory and
which are optional for all Asset Administration Shells. The metamodel for Asset Administration Shells is defined in
Specification.

The metamodel of the Asset Administration Shell is suitable for type assets or instance assets. An alternative
approach could have been to define two metamodels, one for type assets and one for instance assets. However, the
large set of similarities led to the decision of only one metamodel.

150

The metamodel itself does not require the existence of mandatory submodels. This is another step of standardization
similar to the standardization of submodels of the Asset Administration Shell type level.

An Asset Administration Shell type shall be realized based on the metamodel of an Asset Administration Shell as
defined in this document. This metamodel is referred to as "Asset Administration Shell Metamodel".

It is not mandatory to define an Asset Administration Shell type before defining an Asset Administration Shell
(instance). An Asset Administration Shell instance that does not realize an Asset Administration Shell type shall be
realized based on the metamodel of an Asset Administration Shell as defined in this document.

151

«AAS Metamodel»
 AAS

assetKind
globalAssetId

derivedFrom: Reference
[0..1]

description: LangStringSet
[0..1]

«AAS Type»
 http: / /TemperatureSensor.com

assetKind = Type
globalAssetId
valueRange

productClass = Component
manufacturer
description

«AAS»
 http:/ /TemperatureSensorInstance.com

assetKind = Instance
globalAssetId

measuredTemperature

«AAS»
 http: / /T0215551AA.com:AAS

manufacturer =
ExampleManufacturer

globalAssetId = 0215551AA
assetKind = Type

valueRange = -40 °C / 140
°C

productClass = Component
description (EN) = precise

and fast temperature
measurement

«AAS»
 http://T1.com:AAS

assetKind = Instance
globalAssetId =
0215551AAA_T1

measuredTemperature = 60

«AAS»
 http://T2.com:AAS

assetKind = Instance
globalAssetId =
0215551AAA_T2

measuredTemperature =
100

conformant to

conformant toconformant to

conformant toReference

+der ivedFrom

Reference

+der ivedFrom

Reference

+der ivedFrom

conformant to conformant to

Figure 57. Example: Asset Administration Shell, Asset Administration Shell Types and Instances

Identification of Elements

Overview

According to [4], identifiers are needed for the unique identification of many different elements within the domain of
smart manufacturing. They are a fundamental element of a formal description of the Administration Shell. Identification

152

is especially required for

• Asset Administration Shells,

• assets,

• submodel instances and submodel templates,

• property definitions/concept descriptions in external repositories, such as ECLASS or IEC CDD.

Identification will take place for two purposes

• to uniquely distinguish all elements of an Administration Shell and the asset it is representing, and

• to relate elements to external definitions, such as submodel templates and property definitions, in order to bind
semantics to this data and the functional elements of an Administration Shell.

Identifiers for Assets and Administration Shells

In the domain of smart manufacturing, the assets need to be uniquely identified worldwide [4] [20] by the means of
identifiers (IDs). The Administration Shell also has a unique ID (see Figure 58).

Figure 58. Unique Identifier for Administration Shell and Asset (Modified Figure from [4])

An Administration Shell represents exactly one asset, with a unique asset ID. In a batch-based production, the batches
will become the assets and will be described by a respective Administration Shell. If a set of assets shall be described
by an Administration Shell, a unique ID for the composite asset needs to be created [13].

The ID of the asset needs to comply with the restrictions for global identifiers according to [4][20]. If the asset features
further identifications like serial numbers and alike, they are not to be confused with the unique global identifiers of the
asset itself[4].

What Type of Identifiers Exist?

In [4][20], two standard-conforming global identification types are defined:

• IRDI – ISO29002-5, ISO IEC 6523 and ISO IEC 11179-6 [20] as an identifier scheme for properties and
classifications. They are created in a process of consortium-wise specification or international standardization. To
this end, users come together and feed their ideas into the consortia or standardization bodies. Properties in ISO,
IEC help to safeguard key commercial interests. Repositories like ECLASS and others make it possible to
standardize a relatively large number of identifiers in an appropriately short time.

• IRI – IRI (RFC 3987) or URI and URL according to RFC 3986 as identification of assets, Administration Shells and
other (probably not standardized, but globally unique) properties and classifications.

The following is also permitted:

• Custom – internal custom identifiers such as UUIDs/GUIDs (universally unique identifiers/globally unique
identifiers), which a manufacturer can use for all sorts of in-house purposes within the Administration Shell.

This means that the IRIs/URIs/URLs and internal custom identifiers can represent and communicate manufacturer-
specific information and functions in the Administration Shell and the 4.0 infrastructure just as well as standardized
information and functions. One infrastructure can serve both purposes.

153

https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3986
https://en.wikipedia.org/wiki/Universally_unique_identifier

Besides the global identifiers, there are also identifiers that are unique only within a defined namespace, typically its
parent element. These identifiers are also called local identifiers. For example, properties within a submodel have local
identifiers.

Besides absolute URIs there are also relative URIs.

See also DIN EN IEC 61406 [31] for further information on identification.

Which Identifiers for Which Elements?

Not every identifier is applicable for every element of the UML model representing the Asset Administration Shell.
Table 14 therefore gives an overview on the different constraints and recommendations on the various entities, which
implement Identifiable or HasSemantics.

See Annex How Are New Identifiers Created? for more information on how to create new identifiers and best practices
for creating URI identifiers.

Table 14. Elements with Allowed Identifying Values

Elements with
identifying values

Attribute Allowed identifiers
(recommended or
typical)

Remarks

AssetAdministrationS
hell

id IRI (URL) mandatory

Typically, URLs will be used.

idShort string optional[5]

displayName multi language string optional

AssetInformation globalAssetId IRI recommended

As soon as the Asset Administration Shell is
"released" for production or operation, a
globalAssetId should be assigned.

An Asset ID may be retrieved e.g., by a QR
code on the asset, by an RFID for the asset,
from the firmware of the asset, or from an
asset database. IEC 61406 (formerly DIN
SPEC 91406) defines the format of such
Asset IDs.

specificAssetId IRI, Custom recommended

An asset typically may be represented by
several different identification properties like
for example the serial number, its RFID
code etc.

They are used for lookup of Asset
Administration Shells in cases the
globalAssetId is not available. However, they
do not need to be globally unique.

154

Elements with
identifying values

Attribute Allowed identifiers
(recommended or
typical)

Remarks

Submodel with kind =
Template

id IRDI, IRI (URI) mandatory

IRDI, if the defined submodel is
standardized and has been assigned an
IRDI.

idShort string recommended

Typically used as idShort for the submodel
of kind Instance as well

displayName multi language string recommended

Typically used as displayName for the
submodel of kind Instance as well

semanticId IRDI, IRI (URI) recommended

The semantic ID might refer to an external
semantic model defining the semantics of
the submodel.

supplementalSe
manticId

IRDI, IRI (URI) optional

Submodel with kind =
Instance

id IRI (URI), Custom mandatory

idShort string recommended

Typically, the idShort or English short name
of the submodel template that is referenced
via semanticId.

displayName multi language string optional

semanticId IRDI, IRI (URI) recommended

Typically, the semanticId is an external
reference to an external standard defining
the semantics of the submodel.

supplementalSe
manticId

IRDI, IRI (URI) optional

SubmodelElement idShort string mandatory

Typically, the English short name of the
concept definition that is referenced via
semanticId.

155

Elements with
identifying values

Attribute Allowed identifiers
(recommended or
typical)

Remarks

displayName multi language string optional

If no display name is defined in the
language requested by the application, the
display name may be selected in the
following order, if available:

• the preferred name in the requested
language of the concept description
defining the semantics of the element,

• if there is a default language list defined
in the application, the corresponding
preferred name in the language is
chosen according to this order,

• the English preferred name of the
concept description defining the
semantics of the element,

• the short name of the concept
description,

• the idShort of the element.

semanticId IRDI, IRI (URI),
Custom

recommended

link to a ConceptDescription or the concept
definition in an external repository via a
global ID

supplementalSe
manticId

IRDI, IRI (URI) optional

ConceptDescription id IRDI, IRI, Custom mandatory

ConceptDescription needs to have a global
ID. If the concept description is a copy from
an external dictionary like ECLASS or IEC
CDD, it may use the same global ID as it is
used in the external dictionary.

idShort string recommended

e.g. same as English short name

displayName multi language string optional

isCaseOf IRDI, IRI (URI) optional

links to the concept definition in an external
repository, which the concept description is
a copy from, or that it corresponds to

156

Elements with
identifying values

Attribute Allowed identifiers
(recommended or
typical)

Remarks

Qualifier semanticId IRDI, IRI (URI),
Custom

recommended

Links to the qualifier type definition in an
external repository

IRDI, if the defined qualifier type is
standardized and has been assigned an
IRDI.

Usage of Short ID for Identifiable Elements

The Administration Shell fosters the use of worldwide unique identifiers to a large degree. However, in some cases,
this may lead to inefficiencies. Example: a property, which is part of a submodel, which in turn is part of an
Administration Shell, each of which is identified by global identifiers [4].

In an application featuring a resource-oriented architecture (ROA), a worldwide unique resource locator (URL) might
be composed of a series of segments, which do not need to be globally unique, see Figure 59.

Figure 59. Motivation of Exemplary Identifiers and idShort

To allow such efficient addressing by the chaining of elements by an API of an Administration Shell, idShort is
provided for a set of classes of the metamodel. It inherits from the abstract class Referable, in order to refer to such
dependent elements.

Before accessing concrete data provided via a submodel, an application typically checks if the submodel provides the
required data, i.e. the semantics of the submodel is checked for suitability. A so-called semanticId should be defined
for this submodel as well as the submodel element. This semantic ID helps to easily find the semantic definition of the
submodel (see Has Semantics Attributes).

157

Matching Strategies

Matching Strategies for Semantic Identifiers

When comparing two elements, different use cases should be considered in order to define how these two elements
are semantically related. This clause gives first hints on the aspects to consider when dealing with matching semantic
identifiers. The actual implementations in applications may differ from the strategies presented here. For example,
semantic references including context information as represented in IRDI-Path in ECLASS are not yet considered.
Sometimes a concept description is derived from another concept description or is identical to or at least compatible
with another concept description.

Exact Matching (identical semanticIds) – DEFAULT

• With exact matching, two semantic IDs need to represent two exact matching references (see Matching Algorithm
for References).

- Example: Property ith idShort "ManufacturerName" + semanticId value 0173-1#02-AAO677#002 and Property
with idShort "Herstellername" + semanticId value 0173-1#02-AAO677#002 have exactly equal semantics if
the Key/types in both semanticIds are identical plus the other attributes of a Reference like type and
referredSemanticId as well. So if the first key type of property "ManufacturerName" is ExternalReference and
the first key type of the semanticId of property "Herstellername" is ModelReference then the two semanticIds
are no exact match. Or if the first reference contains a referredSemanticId value and the second does not the
two semantic IDs are not exact matches.

Note 1: Typically, a Reference for a semanticId does not have a referredSemanticId

Value Matching

• With value matching, the key values of the two semantic IDs being compared need to be string-identical, i.e. the
two references need to value match (see Matching Algorithm for References).

- Example: Property with idShort "ManufacturerName" + semanticId 0173-1#02-AAO677#002 and Property
with idShort "Herstellername" + semanticId 0173-1#02-AAO677#002 have value equal semantics.

Intelligent Matching (compatible semanticIds)

Diffent kinds of intelligent matching may be considered to be implemented. Some are explained in the following.

• Ignore Versioning

- With intelligent matching, different versions of a concept definition may be matched. For example, if semantic
versioning is used to version the concept description, then upward or backward compatible versions can be
matched.

- Example: property with idShort "ManufacturerName" + semanticId 0173-1#02-AAO677#002 and Property with
idShort "Herstellername" + semanticId 0173-1#02-AAO677#003 have equal semantics.

Note 2: to compare two semantic IDs, knowledge about versioning needs to be available. In the example above,
two IRDIs from ECLASS are compared. ECLASS rules ensure that the semantics is always backward compatible
for new versions; a new IRDI would be created for breaking changes.

• Consider different syntax of identifiers

- With intelligent matching, different syntax of the same identifier may be matched. For example ECLASS allows
to specify an identifier of a concept definition as IRDI or as URL. ECLASS and IEC CDD both use IRDIs,
however, the limiters are different.

- Example: https://api.eclass-cdp.com/0173-1-02-AAC895-008 matches 0173-1#02-AAC895#008

158

- Example: 0173-1#02-AAC895#008 matches 0173/1///02#AAC895#008

• Consider supplemental semantic IDs (any)

- With intelligent matching two sets of semantic IDs may be compared: Input is a set of semantic IDs, not
distinguishing between semanticId and ref:ROOT:spec-
metamodel/core.adoc#HasSemantics[HasSemantics/supplementalSemanticId]. SupplementalSemanticIds are
not ordered, so index information is not relevant. The input matches to an element for which either its
semanticId is in the Input set of semantic IDs or one of its supplemental IDs matches to ones of the semantic
IDs in the Input set.

- In addition exact or value matching of semantic IDs can be distinguished (see before)

- Example: Input Set = { 0173/1///02#AAC895#008} matches for a property with semanticId = https://api.eclass-
cdp.com/0173-1-02-AAC895-008 and supplementalSemanticId = 0173/1///02#AAC895#008.

- Example: Input Set = { 0173-1#02-AAC895#00, https://api.eclass-cdp.com/0173-1-02-AAC895-008,
0173/1///02#AAC895#008 } would match for a property with semanticId = https://api.eclass-cdp.com/0173-1-
02-AAC895-008 and no supplemental semantic IDs.

• Consider supplemental semantic IDs (all)

- With intelligent matching two sets of semantic IDs may be compared: Input is a set of semantic IDs, not
distinguishing between semanticId and supplementalSemanticId. SupplementalSemanticIds are not ordered,
so index information is not relevant. The input matches to an element for which all the semantic IDS of the
input set are available, either as semantic ID or as supplementalSemanticId.

- In addition exact or value matching of semantic IDs can be distinguished (see before)

- Example: Input Set = { 0173/1///02#AAC895#008} matches for a property with semanticId = https://api.eclass-
cdp.com/0173-1-02-AAC895-008 and supplementalSemanticId = 0173/1///02#AAC895#008.

- Example: Input Set = { 0173-1#02-AAC895#00, https://api.eclass-cdp.com/0173-1-02-AAC895-008,
0173/1///02#AAC895#008 } does not match for a property with semanticId = https://api.eclass-cdp.com/0173-
1-02-AAC895-008 and no supplemental semantic IDs.

• Consider supplemental semantic IDs and isCaseOf

- The two intelligent matching strategies "Consider supplemental semantic IDs (any)" and "Consider
supplemental semantic IDs (all)" may be extended to also include the ref:ROOT:spec-metamodel/concept-
description.adoc#ConceptDescription[isCaseOf] information of a ref:ROOT:spec-metamodel/concept-
description.adoc#ConceptDescription[ConceptDescription] referenced via one of the semantic IDs
(semanticId or supplementalSemanticId) of an element.

- Example: Input Set = { 0173/1///02#AAC895#008} matches for a property with semanticId =
[ModelRef](ConceptDescription) https://admin-shell.io.example if the isCaseOf value of the referenced
concept description with id = https://admin-shell.io.example is equal to 0173/1///02#AAC895#008.

• Consider Semantic Mappings

- Existing semantic mapping information can be considered for intelligent matching. Semantic mappings may
exist within one and the same dictionary, but also between different dictionaries and ontologies.

- Example: 0112/2///61360_4#AAE530 for nominal capacity of a battery in dictionary IEC CDD and 0173-1#02-
AAI048#004 in ECLASS have equal semantics[6] [7].

Note 3: this example does not represent an existing semantic mapping; it is only a candidate.

• Consider Domain Knowledge

- With intelligent matching, domain knowledge available in machine-readable form may be taken into account,
such as an "is-a"-relationship between two concept definitions.

- Example: a Hammer drill (0173-1#01-ADS698#010) and a percussion drill (0173-1#01-ADS700#010) are
drills for mineral material (0173-1#01-ADN177#005) and are compatible with a request or constraints asking
for drills for mineral material.

159

Matching Algorithm for References

Clause Matching Strategies for Semantic Identifiers has discussed matching strategies for semantic identifiers. This
clause explains matching strategies based on the reference concept (see Referencing) in more detail and covers other
kinds of identifying elements.

For example, the string serialization of references as defined in Text Serialization of Values of Type "Reference" is
used for easier understanding.

Note 4: Matching in this context means supporting a discovery query against an existing model.

A typical query would be to find some element with a specific semantic ID. In this case the data consumer only
knows the external ID whereas the provider may have created a duplicate of the concept definition as
ConceptDescription and a model reference could be used

Matching does not mean to define equivalence classes that allow to overwrite constraints as defined in the
specification for valid instances of the metamodel.

Exact matching of two references

• Two References are identical if all attributes values are identical.

Examples for non-matching external references[8]:

(GlobalReference)0173-1#01-ADS698#010, (GlobalReference)0173-1#01-ADS700#010

is no exact match for

(GlobalReference)0173-1#01-ADS698#010, (FragmentReference)0173-1#01-ADS700#010

but a value match.

Value matching of two references

• An external reference A matches an external reference B if all values of all keys are identical.

Note 5: it is unlikely that a fragment value is identical to a global reference value; it will reference something
different.

• A model reference A matches a model reference B if all values of all keys are identical.

Note 6: the key type can be ignored since the fragment keys are always unique (e.g. all idShorts of submodel
elements in a submodel or all submodel elements in a submodel element list or collection).

• An external reference A matches a model reference B and vice versa if all values of all keys are identical.

• The Reference/type and Reference/referredSemanticId are ignored for matching.

Note 7: since identifiables of the Asset Administration Shell are globally unique, model references are special
cases of global references. The only difference is the handling of key types that are predefined for Asset
Administration Shell elements. Other key types could be predefined, e.g. for IRDI-Paths etc. However, so far only

160

generic key types are supported.

Note 8: if the values for attribute referredSemanticId of the two references compared are not identical then there
is a mismatch between the two that should be resolved. However, the two are considered to match in the context
of discovery.

Note 9 for model reference to model reference matching or external to external reference matching: if the key
types are not identical although all key values follow the correct order of the key chain, then at least one of the
references is buggy and a warning may be issued. Exception: one of the model references uses an abstract
class as value for the key type, the other model reference uses a non-abstract class (e.g. SubmodelElement and
Property).

The definition of XML Schema is used for matching

• (Of string or names:) Two strings or names being compared must be identical.

• Characters with multiple possible representations in ISO/IEC 10646 (e.g. characters with both precomposed and
base+diacritic forms) match only if they have the same representation in both strings

• No case folding is performed.

• (Of strings and rules in the grammar:) A string matches a grammatical production if it belongs to the language
generated by that production.

Examples for matching external references[9]:

(GlobalReference)0173-1#01-ADS698#010, (GlobalReference)0173-1#01-ADS700#010

value-matches

(GlobalReference)0173-1#01-ADS698#010, (FragmentReference)0173-1#01-ADS700#010

Examples for non-matching external references:

(GlobalReference)https://example.com/aas/1/1/1234859590, (FragmentReference)Specification,
(FragmentReference)Bibliography

does not value-match

(GlobalReference)https://example.com/aas/1/1/1234859590, (FragmentReference)Specification,
(FragmentReference)Bibliographie

since the values of the last fragment differ.

Examples for matching model references:

Although these two model references would match according to the matching rules, other rules are violated, i.e. that
the ID of the submodel is unique. If the ID of a submodel is unique, it is not possible that there are two direct submodel
element children with the same name (here: Specification). It is also not possible that two different versions of the

161

https://www.w3.org/TR/xmlschema-2/#terminology

same submodel are compared here, because we would then assume that the ID also contains the version information
(see Administrative Information Attributes). The matching algorithm would still identify these two model references as
matching although one of them is buggy.

(Submodel)https://example.com/aas/1/1/1234859590, (File)Specification

matches

(Submodel)https://example.com/aas/1/1/1234859590, (Blob)Specification

Examples for matching model and external references:

(Submodel)https://example.com/aas/1/1/1234859590

matches

(GlobalReference)https://example.com/aas/1/1/1234859590

Note 10: this kind of Submodel matching might occur if a SubmodelElement of type ReferenceElement is
matched against a query for this element. It is not allowed to substitute the Submodel references within
AssetAdministrationShell/submodels with an external reference!

(Submodel)https://example.com/aas/1/1/1234859590, (File)Specification
(FragmentReference)Bibliography

matches

(GlobalReference)https://example.com/aas/1/1/1234859590, (FragmentReference)Specification,
(FragmentReference)Bibliography

Submodel Instances and Templates

Can New or Proprietary Submodels be Formed?

It is in the interest of Industry 4.0 for as many submodels as possible, including free and proprietary submodels, to be
formed (see [4], "Free property sets"). A submodel can be formed at any time for a specific Administration Shell of an
asset. The provider of the Administration Shell can form in-house identifiers for the type and instance of the submodel
in line with Identification of Elements. All I4.0 systems are called on to ignore submodels and properties that are not
individually known. Hence, it is always possible to deposit proprietary – e.g. manufacturer-specific or user-specific –
information, submodels, or properties in an Administration Shell.

Note: it is the intention of the Administration Shell to include proprietary information, e.g. to link to company-wide
identification schemes or information required for company-wide data processing. This way, a single
infrastructure can be used to transport standardized and proprietary information at the same time. New

162

information elements can also be conveyed and introduced (and standardized at a later stage).

Creating a Submodel Instance Based on an Existing Submodel Template

A public specification of a submodel template (e.g. via publication by IDTA) should be available to instantiate an
existing submodel template. In special cases, a submodel can also be instantiated from a non-public submodel
template, such as a manufacturer specification.

In November 2020, the first two submodel templates for the Asset Administration Shell were published, one for a
nameplate [40] and one for generic technical data [39]. Others followed and will follow. Please see [45] for an overview
of registered submodel templates.

The identifiers of concept definitions to be used as semantic references are already predefined in each submodel
template. An instantiation of such a submodel merely requires the creation of properties with a semantic reference to
the property definition and an attached value. The same applies to other subtypes of submodel elements.

The only thing that cannot be defined in the template itself is the unique ID of the submodel instance itself (it is not
identical to the ID of the submodel template), as well as the property values, etc. Templates also define cardinalities,
for example whether an element is optional or not. Submodel element lists typically contain more than one element:
the template contains an exemplary element template; the other elements can be created by copy/paste from this
template.

Events

Overview

Events are a very versatile mechanism of the Asset Administration Shell. The following subclauses describe some use
cases for events. They summarize different types of events to depict requirements, introduce a SubmodelElement
EventElement to enable declaration of events of an Asset Administration Shell. Further, the general format of event
messages is specified.

Note: the concept of event is still in the experimental phase. Please be aware that backward compatibility cannot
be ensured for future versions of the metamodel.

Brief Use Cases for Events Used in Asset Administration Shells

Event use cases are briefly outlined in the following:

• An integrator has purchased a device. Later in time, the supplier of the device provides a new firmware. The
integrator wants to detect the offer of a new firmware and wants to update the firmware after evaluating its
suitability ("forward events"). A dependent Asset Administration Shell ("D4") detects events from a parent or type
Asset Administration Shell ("D1"), which is described by the derivedFrom relation. An illustration of the use case is
given in Figure 60.

• An integrator/operator operates a motor purchased from a supplier. During operation, condition monitoring
incidents occur. Both parties agree on a business model providing availability. The supplier wants to monitor
device statuses which are located further in the value chain ("reverse events"). An illustration of the use case is
given in Figure 60.

163

Figure 60. Forward and Reverse Events

• An operator is operating a certain I4.0 component over time. Changes that occasionally occur to these I4.0
components from different systems shall be tracked for documentation and auditing purposes. This can be
achieved by recording events over time. An illustration of the use case is given in Figure 61.

Figure 61. Tracking of Changes via Events

• An operator is operating different I4.0 components, which are deployed to manufacturer clouds. The operator

164

wants to integrate data from these components, according to DIN SPEC 92222. For this purpose, information
needs to be forwarded to the operator cloud ("value push"). An illustration of the use case is given in Figure 62.

Figure 62. Value Push Events Across Clouds

Input and Output Directions of Events

We can distinguish between incoming and outgoing events. See Table 15 for more information on the event directions.

Table 15. Directions of Events

Direction Description

Out The event is monitoring the Referable it is attached to. An outer message
infrastructure, e.g. by OPC UA, MQTT or AMQP, will transport these events to
other Asset Administration Shells, further outer systems and users.

In The software entity, which implements the respective Referable, can handle
incoming events. These incoming events will be delivered by an outer
message infrastructure, e.g. OPC UA, MQTT or AMQP, to the software entity
of the Referable.

Types of Events

The uses cases described in Brief Use Cases for Events Used in Asset Administration Shells need different types of
events. Each event type is identified by a semanticId and features a specialized payload.

Table 16 gives an overview of types of events. The possible directions of an event are described in Input and Output
Directions of Events.

Table 16. Types of Events

Group Direction Motivation / Conditions

Structural changes of the
Asset Administration Shell

Out • CRUD[10] of Submodels, Assets, SubmodelElements, etc.

165

Group Direction Motivation / Conditions

In • Detect updates on parent/type/derivedFrom Asset Administration
Shell

Updates of properties and
dependent attribute

Out • update of values of SubmodelElements

• time-stamped updates and time series updates

• explicit triggering of an update event

Operation element of Asset
Administration Shell

Out • monitoring of (long-lasting) execution of OperationElement and
updating events during execution

Monitoring, conditional,
calculated events

Out • e.g. when voiding some limits (e.g. stated by Qualifiers with
expression semantics)

Infrastructure events Out • Booting, shutdown, out of memory, etc. of software entity of
respective Referable (Asset Administration Shell, Submodel)

Repository events In/ Out • Change of semantics of IRDIs (associated concept definition)

Security events Out • logging events

• access violations, unfitting roles and rights, denial of service, etc.

Alarms and events Out • alarms and events management analog to distributed control
systems (DCS)

Custom Event Types

Custom event types can be defined by using a proprietary, but worldwide unique, semanticId for this event type. Such
customized events can be sent or received by the software entity of the respective referable, based on arbitrary
conditions, triggers, or behavior. While the general format of the event messages needs to comply with this
specification, the payload might be completely customized.

Event Scopes

Events can be stated with an observableReference to the Referables of Asset Administration Shell, Submodels, and
SubmodelElements. These Referables define the scope of the events, which are to be received or sent. Table 17
describes the different scopes of an event.

Table 17. Event Scopes

Event attached to … Scope

AssetAdministrationShell This event monitors/represents all logical elements of an Administration Shell,
such as AssetAdministrationShell, AssetInformation, Submodels.

Submodel This event monitors/represents all logical elements of the respective
Submodel and all logical dependents.

SubmodelElementList and
SubmodelElementCollection and
Entity

This event monitors/represents all logical elements of the respective
SubmodelElementCollection, SubmodelElementList or Entity and all logical
dependents (value or statement resp.).

SubmodelElement (others) This event monitors/represents a single atomic SubmodelElement, e.g. a data
element which might include the contents of a Blob or File.

166

Value Only Serialization Example

The following example shows the ValueOnly-Serialization for an entire Submodel that validates against the JSON-
schema specified in Clause JSON-Schema for the Value-Only Serialization As mentioned in JSON-Schema for the
Value-Only Serialization, SubmodelElementCollections cannot be validated within the same schema due to circularity
reasons; instead they have their own specific validation schema. An exemplary SubmodelElementCollection is added
to the following JSON for completeness. It is, however, not validatable against the schema in JSON-Schema for the
Value-Only Serialization due to the reasons mentioned above.

{
 "MyPropertyIdShortNumber": 5000,
 "MyPropertyIdShortString": "MyTestStringValue",
 "MyPropertyIdShortBoolean": true,
 "MyMultiLanguageProperty": [
 {
 "de": "Das ist ein deutscher Bezeichner"
 },
 {
 "en": "That's an English label"
 }
],
 "MyRange": {
 "min": 3,
 "max": 15
 },
 "MyFile": {
 "contentType": "application/pdf",
 "value": "SafetyInstructions.pdf"
 },
 "MyBlob": {
 "contentType": "application/octet-stream",
 "value": "VGhpcyBpcyBteSBibG9i"
 },
 "MyEntity": {
 "statements": {
 "MaxRotationSpeed": 5000
 },
 "entityType": "SelfManagedEntity",
 "globalAssetId": "http://customer.com/demo/asset/1/1/MySubAsset"
 },
 "MyReference": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/1/1234859590"
 },
 {
 "type": "Property",
 "value": "MaxRotationSpeed"
 }
]
 },

167

 "MyBasicEvent": {
 "observed": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/1/1234859590"
 },
 {
 "type": "Property",
 "value": "CurrentValue"
 }
]
 }
 },
 "MyRelationship": {
 "first": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/1/1234859590"
 },
 {
 "type": "Property",
 "value": "PlusPole"
 }
]
 },
 "second": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/0/1234859123490"
 },
 {
 "type": "Property",
 "value": "MinusPole"
 }
]
 }
 },
 "MyAnnotatedRelationship": {
 "first": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/1/1234859590"
 },
 {

168

 "type": "Property",
 "value": "PlusPole"
 }
]
 },
 "second": {
 "type": "ModelReference",
 "keys": [
 {
 "type": "Submodel",
 "value": "http://customer.com/demo/aas/1/0/1234859123490"
 },
 {
 "type": "Property",
 "value": "MinusPole"
 }
]
 },
 "annotations": [
 {
 "AppliedRule": "TechnicalCurrentFlowDirection"
 }
]
 },
 "MySubmodelElementIntegerPropertyList": [
 1,
 2,
 30,
 50
],
 "MySubmodelElementFileList": [
 {
 "contentType": "application/pdf",
 "value": "MyFirstFile.pdf"
 },
 {
 "contentType": "application/pdf",
 "value": "MySecondFile.pdf"
 }
],
 "MySubmodelElementCollection":
 {
 "myStringElement": "That’s a string",
 "myIntegerElement": 5,
 "myBooleanElement": true
 }
}

Backus Naur Form

The Backus-Naur form (BNF) – a meta-syntax notation for context-free grammars – is used to define grammars. For
more information see Wikipedia.

169

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

A BNF specification is a set of derivation rules, written as

<symbol> ::= __expression__

where:

• <symbol> is a nonterminal (variable) and the expression consists of one or more sequences of either terminal or
nonterminal symbols,

• ::= means that the symbol on the left must be replaced with the expression on the right,

• more sequences of symbols are separated by the vertical bar "|", indicating a choice, the whole being a possible
substitution for the symbol on the left,

• symbols that never appear on a left side are terminals, while symbols that appear on a left side are non-terminals
and are always enclosed between the pair of angle brackets <>,

• terminals are enclosed with quotation marks: "text". "" is an empty string,

• optional items are enclosed in square brackets: [<item-x>],

• items existing 0 or more times are enclosed in curly brackets are suffixed with an asterisk (*) such as <word> ::=
<letter> {<letter>}*,

• items existing 1 or more times are suffixed with an addition (plus) symbol, +, such as <word> ::= {<letter>}+,

• round brackets are used to explicitly to define the order of expansion to indicate precedence, example: (
<symbol1> | <symbol2>) <symbol3>,

• text without quotation marks is an informal explanation of what is expected; this text is cursive if grammar is non-
recursive and vice versa.

Example:

<contact-address> ::= <name> "e-mail addresses:" <e-mail-Addresses>

<e-mail-Addresses> ::= {<e-mail-Address>}*

<e-mail-Address> ::= <local-part> "@" <domain>

<name> ::= characters

<local-part> ::= characters conformant to local-part in RFC 5322

<domain> ::= characters conformant to domain in RFC 5322

Valid contact addresses:

Hugo Me e-mail addresses: Hugo@example.com

Hugo e-mail addresses: Hugo.Me@text.de

Invalid contact addresses:

Hugo

170

https://en.wikipedia.org/wiki/Symbol
https://en.wikipedia.org/wiki/Nonterminal
https://en.wikipedia.org/wiki/Expression_(mathematics)
https://en.wikipedia.org/wiki/Vertical_bar
https://en.wikipedia.org/wiki/Alternation_(formal_language_theory)
https://en.wikipedia.org/wiki/Terminal_symbol
https://en.wikipedia.org/wiki/Nonterminal_symbol

Hugo Hugo@ example.com

Hugo@example.com

UML Templates

General

The templates used for element specification are explained in this annex. For details for the semantics see Legend for
UML Modelling.

For capitalization of titles, rules according to https://capitalizemytitle.com/ are used.

Template for Classes

Template 18. Class

Class: <Class Name> ["<<abstract>>"] ["<<Experimental>>"] ["<<Deprecated>>"]
["<<Template>>"]

Explanation: <Explanatory text>

Inherits from: {<Class Name> ";" }+ | "-"

ID: <metamodel element ID>

Attribute ID

Explanation Type Card.

<attribute or association
name> ["<<ordered>>"]
["<<Experimental>>"]
["<<Deprecated>>"]

<metamodel element ID>

<Explanatory text> <Type> <Card>

ID is the metamodel ID of the class or attribute, conformant to the grammar defined in Text Serialization of Values of
Type "Reference". A metamodel ID for a class attribute is concatenated by <ID of metamodel element ID of
class>/<relative metamodel element ID>.

The following stereotypes can be used:

• <<abstract>>: Class cannot be instantiated but serves as superclass for inheriting classes

• <<Experimental>>: Class is experimental, i.e. usage is only recommended for experimental purposes because
non-backward compatible changes may occur in future versions

• <<Deprecated>>: Class is deprecated, i.e. it is recommended to not use the element any longer; it will be
removed in a next major version of the model

• <<Template>>: Class is a template only, i.e. class is not instantiated but used for additional specification purposes
(for details see parts 3 of document series)

The following kinds of Types are distinguished:

• <Class>: Type is an object type (class); it is realized as composite aggregation (composition), and does not exist
independent of its parent

• ModelReference<{Referable}>: Type is a Reference with Reference/type=ModelReference and is called model

171

https://capitalizemytitle.com/

reference; the {Referable} is to be substituted by any referable element (including Referable itself for the most
generic case) – the element that is referred to is denoted in the Key/type=<{Referable}> for the last Key in the
model reference; for the graphical representation see Annex UML , Figure Graphical Representation of Shared
Aggregation; for more information on referencing see Referencing.

• <Primitive>: Type is no object type (class) but a data type; it is just a value, see Primitive Data Types

• <Enumeration>: Type is an enumeration, see Template for Enumerations

Card. is the cardinality (or multiplicity) defining the lower and upper bound of the number of instances of the member
element. "*" denotes an arbitrary infinite number of elements of the corresponding Type. "0..1" means optional. "0..*"
or "0..3" etc. means that the list may be either not available (optional) or the list is not empty. In the case of "0..3" there
are at most 3 elements in the list. "1" means the attribute is mandatory. "1.." or "1..3" means there is at least 1
element in the list. The "" denotes as maximum an infinite number of elements of the corresponding type whereas
"3" means that there are at most 3 elements in the list - analogeous for other numbers.

Note 1: attributes having a default value are always considered to be optional; there is always a value for the
attribute because the default value is used for initialization in this case.

Note 2: attributes or attribute elements with data type "string" or "langString" are considered to consist of at least
one character.

Note 3: optional lists, i.e. attributes with cardinality > 1 and minimum 0, are considered to consist of at least one
element.

Examples for valid and invalid model references

If class type equal to "ModelReference<Submodel>", the following reference would be a valid reference (using the text
serialization as defined in Text Serialization of Values of Type "Reference"):

(Submodel)https://example.com/aas/1/1/1234859590

This would be an invalid reference for "ModelReference<Submodel>" because it references a submodel element
"Property":

(Submodel)https://example.com/aas/1/1/1234859590, (Property)temperature

If class type equal to "ModelReference<Referable>", the following references would be valid references (using the text
serialization as defined in Text Serialization of Values of Type "Reference") because "Property" and "File" are
Referables and "Submodel" itself is also Referable since all Identifiables are referable:

(Submodel)https://example.com/aas/1/1/1234859590

(Submodel)https://example.com/aas/1/1/1234859590, (Property)temperature

(Submodel)https://example.com/aas/1/1/1234859590, (File)myDocument

This would be an invalid reference for "ModelReference<Referable>" because FragmentReference is no Referable:

172

mappings/mappings.pdf#reference-serialization

(Submodel)https://example.com/aas/1/1/1234859590, (File)myDocument (FragmentReference)Hints

Template for Enumerations

Template 19. Enumeration

Enumeration: <Enumeration Name> ["<<Experimental>>"] ["<<Deprecated>>"]

Explanation: <Explanatory text>

Set of: {<Enumeration> ";" }+ | "-"

ID: <metamodel element ID>

Literal Explanation

enumValue1>["<<Experimental>
>"] ["<<Deprecated>>"]

<metamodel value ID>

<Explanatory text>

<enumValue2>
["<<Experimental>>"]
["<<Deprecated>>"]

<metamodel value ID>

<Explanatory text>

"Set of:" lists enumerations that are contained in the enumeration. It is only relevant for validation, making sure that all
elements relevant for the enumeration are considered.

"Literal" lists values of enumeration. All values that are element of one of the enumeration listed in "Set of:" are listed
explicitly as well.

Enumeration values use Camel Case notation and start with a small letter. However, there might be exceptions in case
of very well-known enumeration values.

Template for Primitives

Template 20. Primitives

Primitive ID

Definition Value Examples

<Name of
Primitive>

<metamodel ID of Primitive>

<Explanatory text> <Value examples>

UML

OMG UML General

This annex explains the UML elements used in this specification. For more information, please refer to the
comprehensive literature available for UML. The formal specification can be found in [35].

Figure 63 shows a class with name "Class1" and an attribute with name "attr" of type Class2. Attributes are owned by
the class. Some of these attributes may represent the end of binary associations, see also Figure 71. In this case, the

173

instance of Class2 is navigable via the instance of the owning class Class1.[11]

Class1

+attr : Class2

Figure 63. Class

Figure 64 shows that Class4 inherits all member elements from Class3. Or in other word, Class3 is a generalization of
Class4, Class4 is a specialization of Class3. This means that each instance of Class4 is also an instance of Class3.
An instance of Class4 has the attributes attr1 and attr2, whereas instances of Class3 only have the attribute attr1.

Class3

+attr1: Class1

Class4

+attr2: Class2

Figure 64. Inheritance/Generalization

Figure 65 defines the required and allowed multiplicity/cardinality within an association between instances of Class1
and Class2. In this example, an instance of Class2 is always related to exactly one instance of Class1. An instance of
Class1 is either related to none, one, or more (unlimited, i.e. no constraint on the upper bound) instances of Class2.
The relationship can change over time.

Multiplicity constraints can also be added to attributes and aggregations.

The notation of multiplicity is as follows:

<lower-bound>.. <upper-bound>

where <lower-bound> is a value specification of type Integer - i.e. 0, 1, 2, … - and <upper-bound> is a value
specification of type UnlimitedNatural. The star character (*) is used to denote an unlimited upper bound.

The default is 1 for lower-bound and upper-bound.

Class1

Class2

1

0..*

Figure 65. Multiplicity

A multiplicity element represents a collection of values. The default is a set, i.e. it is not ordered and the elements
within the collection are unique and contain no duplicates. Figure 66 shows an ordered collection: the instances of
Class2 related to an instance of Class1. The stereotype <<ordered>> is used to denote that the relationship is
ordered.

174

Class1

Class2

1

{ o r d e r e d }
0..*

Figure 66. Ordered Multiplicity

Figure 67 shows that the member ends of an association can be named as well, i.e. an instance of Class1 can be in
relationship "relation" to an instance of Class2. Vice versa, the instance of Class2 is in relationship "reverseRelation"
to the instance of Class1.

Class1

Class2

+reverseRelat ion

+re lat ion

Figure 67. Association

Figure 68 depicts two classes connected by a unidirectional association from Class1 to Class2. In this association,
only the endpoint is navigable, meaning it is possible to navigate from an instance of Class1 to an instance of Class2,
but not the other way around. An instance of Class1 can be in a 'relation' with an instance of Class2, and the
association is labeled 'Reference'.

Class1

Class2

Reference

+relat ion

Figure 68. Association

A specialty in Figure 68 is that the label 'Reference' indicates the relationship between Class1 and Class2 is of a
Reference type. This means that an instance of Class1 holds a reference to an instance of Class2. Furthermore, the
instance of Class2 is considered 'referable' according to the Asset Administration Shell metamodel, implying that it
inherits from the predefined abstract class 'Referable' in the AAS framework. The structure of a reference to a model
element of the Asset Administration Shell is explicitly defined.

Figure 69 shows a composition, also called a composite aggregation. A composition is a binary association, grouping
a set of instances. The individuals in the set are typed as specified by Class2. The multiplicity of instances of Class2 to
Class1 is always 1 (i.e. upper-bound and lower-bound have value "1"). One instance of Class2 belongs to exactly one
instance of Class1. There is no instance of Class2 without a relationship to an instance of Class1. Figure 69 shows
the composition using an association relationship with a filled diamond as composition adornment.

175

Class1 Class2

Figure 69. Composition (Composite Aggregation)

Figure 70 shows an aggregation. An aggregation is a binary association. In contrast to a composition, an instance of
Class2 can be shared by several instances of Class1. Figure 70 shows the shared aggregation using an association
relationship with a hallow diamond as aggregation adornment.

Class1 Class2

Figure 70. Aggregation

Figure 71 illustrates that the attribute notation can be used for an association end owned by a class. In this example,
the attribute name is "attr" and the elements of this attribute are typed with Class2. The multiplicity, here "0..*", is
added in square brackets. If the aggregation is ordered, it is added in curly brackets like in this example.

Class1

+attr : Class2[0..*]
{o rdered}

Figure 71. Navigable Attribute Notation for Associations

Figure 72 shows a class with three attributes with primitive types and default values. When a property with a default
value is instantiated in the absence of a specific setting for the property, the default value is evaluated to provide the
initial values of the property.

Class1

+attr1: integer = 5
+attr2: string = "str"
+attr3: boolean = true

Figure 72. Default Value

Figure 73 shows that there is a dependency relationship between Class1 and Class2. In this case, the dependency
means that Class1 depends on Class2 because the type of attribute attr depends on the specification of class Class2.
A dependency is depicted as dashed arrow between two model elements.

Class1

attr: Class2
Class2

Figure 73. Dependency

Figure 74 shows an abstract class. It uses the stereotype <<abstract>>. There are no instances of abstract classes.
They are typically used for specific member elements that are inherited by non-abstract classes.

«abstract»
Class1

Figure 74. Abstract Class

Figure 75 shows a package named "Package2". A package is a namespace for its members. In this example, the
member belonging to Package2 is class Class2.

176

Package2

+ Class2

Figure 75. Package

Figure 76 shows that all elements in Package2 are imported into the namespace defined by Package1. This is a
special dependency relationship between the two packages with stereotype <<import>>.

Package1

+ Class1
 + Package2

Package2

+ Class2
impor t

Figure 76. Imported Package

Figure 77 shows an enumeration with the name "Enumeration1". An enumeration is a data type with its values
enumerated as literals. It contains two literal values, "a" and "b". It is a class with stereotype <<enumeration>>. The
literals owned by the enumeration are ordered.

«enumeration»
Enumeration1

a
b

Figure 77. Enumeration

Figure 78 shows how a note can be attached to an element, in this example to class "Class1".

Class1 This is the note

Figure 78. Note

Figure 79 shows how a constraint is attached to an element, in this example to class "Class1".

Class1 {This is the Constraint}

Figure 79. Constraint

UML Naming Rules

The following rules are used for naming of classes, attributes etc.:

• all names use CamelCase; for exceptions see rules for Enumeration values,

• class names always start with a capital letter,

• attribute names always start with a small letter,

• primitive types start with a capital letter; exception: predefined types of XSD like string,

• enumerations start with a capital letter,

• names of member ends of an association start with a capital letter,

• all stereotypes specific to the Asset Administration Shell specification start with a capital letter, e.g.
"<<Deprecated>>"; predefined stereotypes in UML start with a small letter, e.g. "<<abstract>>" or

177

"<<enumeration>>".

In UML, the convention is to name associations and aggregations in singular form. The multiplicity is to be taken into
account to decide on whether there are none, a single, or several elements in the corresponding association or
aggregation.

Note: a plural form of the name of attributes with cardinality >=1 may be needed in some serializations (e.g. in
JSON). In this case, it is recommended to add an "s". In case of resulting incorrect English (e.g. isCaseOf
isCaseOfs), it must be decided whether to support such exceptions.

Templates, Inheritance, Qualifiers, and Categories

At first glance, there seems to be some overlapping within the concepts of data specification templates, extensions,
inheritance, qualifiers, and categories introduced in the metamodel. This clause explains the commonalities and
differences and gives hints for good practices.

In general, an extension of the metamodel by inheritance is foreseen. Templates might also be used as alternatives.

• Extensions can be used to add proprietary and/or temporary information to an element. Extensions do not support
interoperability. They can be used as work-around for missing properties in the standard. In this case, the same
extensions are attached to all elements of a specific class (e.g. to properties). However, in general, extensions can
be attached in a quite arbitrary way. Properties are defined in a predefined way as key values pairs (in this case
keys named "name").

• In contrast to extensions, templates aim at enabling interoperability between the partners that agree on the
template. A template defines a set of attributes, each of them with clear semantics. This set of attributes
corresponds to a (sub-)schema. Templates should only be used if different instances of the class follow different
schemas and the templates for the schemas are not known at design time of the metamodel. Templates might
also be used if the overall metamodel is not yet stable enough or a tool supports templates but not (yet) the
complete metamodel. Typically, all instances of a specific class with the same category provide the same attribute
values conformant to the template. In contrast to extensions, the attributes in the template have speaking names.

Note: categories are deprecated and should no longer be used.

• However, when using non-standardized proprietary data specification templates, interoperability cannot be
ensured and thus should be avoided whenever possible.

• In case all instances of a class follow the same schema, inheritance and/or categories should be used.

• Categories can be used if all instances of a class follow the same schema but have different constraints
depending on their category. Such a constraint might specify that an optional attribute is mandatory for this
category (like the unit that is mandatory for properties representing physical values). Realizing the same via
inheritance would lead to multiple inheritance – a state that is to be avoided[12].

Note: categories are deprecated and should no longer be used.

• Qualifiers are used if the structure and the semantics of the element is the same independent of its qualifiers. Only
the quality or the meaning of the value for the element differs.

• Value qualifiers are used if only the quantity but not the semantics of the value changes. Depending on the
application, either both value and qualifier define the "real" semantics together, or the qualifier is not really relevant
and is ignored by the application. Example: the actual temperature might be good enough for non-critical
visualization of trends, independent of whether the temperature is measured or just estimated (qualifier would
denote: measured or estimated).

• Concept qualifiers are used to avoid multiplying existing semantically clearly defined concepts with the

178

corresponding qualifier information, e.g. life cycle.

• Template qualifiers are used to guide the creation and validation of element instances.

Notes to Graphical UML Representation

Specific graphical modelling rules, which are used in this specification but not included in this form, are explained
below [35].

Figure 80 shows different graphical representations of a composition (composite aggregation). In Variant A, a
relationship with a filled aggregation diamond is used. In Variant B, an attribute with the same semantics is defined.
And in Variant C, the implicitly assumed default name of the attribute in Variant A is explicitly stated. This document
uses notation B.

It is assumed that only the end member of the association is navigable per default, i.e. it is possible to navigate from
an instance of Class1 to the owned instance of Class2 but not vice versa. If there is no name for the end member of
the association given, it is assumed that the name is identical to the class name but starting with a small letter –
compared to Variant C.

Class2 instance only exists if the parent object of type Class1 exists.

A)
B)

C)

Class1

Class2

Class1

+class2: Class2
Class1

Class2

+class2

Figure 80. Graphical Representations of Composite Aggregation/Composition

Figure 81 shows a representation of a shared aggregation: a Class2 instance can exist independently of a Class1
instance. It is assumed that only the end member of the aggregation association is navigable per default, i.e. it is
possible to navigate from an instance of Class1 to the owned instance of Class2 but not vice versa.

Class1

Class2

+ a t t r

Figure 81. Graphical Representation of Shared Aggregation

Figure 82 show different graphical representations of generalization. Variant A is the classical graphical representation
as defined in [35]. Variant B is a short form. The name of the class that Class3 is inheriting from is depicted in the
upper right corner.

Variant C not only shows which class Class3 instances are inheriting from, but also what they are inheriting. This is
depicted by the class name it is inheriting from, followed by "::" and then the list of all inherited elements – here
attribute class2. Typically, the inherited elements are not shown.

179

A)
B)

C)

Class1

+class2: Class2

Class3

Class3
Class1

Class3
Class1

+class2: Class2
::Class1

Figure 82. Graphical Representation of Generalization/Inheritance

Figure 83 depicts different graphical notations for enumerations in combination with inheritance. On the left side
"Enumeration1" additionally contains the literals as defined by "Enumeration2".

Note 1: the direction of inheritance is opposite to the one for class inheritance. This can be seen on the right side
of Figure 83 that defines the same enumeration but without inheritance.

A)

B)

«enumeration»
Enumeration1

a

«enumeration»
Enumeration2

b

«enumeration»
Enumeration1

a
b

Identical

Figure 83. Graphical Representation for Enumeration with Inheritance

Note 2: in this specification all elements of an enumeration are ordered alphabetically.

Figure 84 shows an experimental class, marked by the stereotype "Experimental".

«Experimental»
Class1

Figure 84. Graphical Representation for Experimental Classes

Figure 85 depicts a deprecated class, which is marked by the stereotype "Deprecated" whereas Figure 86 depicts a
deprecated attribute within a class.

180

«Deprecated»
Class1

Figure 85. Graphical Representation for Deprecated Class

Class1

+attr : Class2 «Deprecated»

Figure 86. Graphical Representation for Deprecated Attribute

Figure 87 shows a class representing a template. It is marked by the stereotype "Template".

«Template»

Class1

Figure 87. Graphical Representation of a Template Class

Grammar Semantic IDs for Metamodel

Rules for creating identifiers are defined to enable the unique identification of concepts as used and defined in the
metamodel of the Asset Administration Shell.

Grammar Semantic Metamodel Identifiers

The following grammar is used to create valid identifiers:

<Namespace> ::= <AAS Namespace> | <ID of Data Specification>

<Namespace Qualifier> ::= <AAS Namespace Qualifier> | <Data Specification Qualifier>

<AAS Namespace> ::= <Shell-Namespace> "/aas/" <Version>

<Shell-Namespace> ::= "https://admin-shell.io/"

<Version> ::= {<Digit>}+ "/" {<Digit>}+ ["/" {<Character>}+]

<Digit> ::= "0"| "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

<Character> ::= characters conformant to regular expression [a..zA..Z-]

For AAS a predefined namespace qualifier is defined. For data specifications this is defined within the corresponding
specifications for single data specifications.

<ID of Data Specification> ::= defined per Data Specification

<Data Specification Qualifier> ::= defined per Data Specification

<AAS Namespace Qualifier> ::= "AAS:"

181

Note: the Data Specification ID should include versioning information. Data Specifications defined by the IDTA
typically start with the <AAS namespace> as well. Additionally, a sub-namespace is defined following the rules of
the Identification Scheme of the Asset Administration Shell.

A concrete unique identifier is defined as follows:

<AAS Unique Concept Identifier> ::= (<Namespace> | <Namespace Qualifier>) "/" <AAS Concept
Identifier>

<AAS Concept Identifier> ::= <AAS Class Name> [(<AAS Attribute> | <AAS Enumeration>)]

<AAS Attribute> ::= "/" <AAS Attribute Name> [{ "/" <AAS Attribute Name>}*]

<AAS Enumeration> ::= [{ "/" <AAS Attribute Name>}*] "/" <AAS Enumeration Value>

Examples for Semantic Metamodel Identifiers

Examples for valid unique Asset Administration Shell concept identifiers:

https://admin-shell.io/aas/2/0/AssetAdministrationShell/administration/version

AAS:AssetAdministrationShell/administration/version

AAS:AssetInformation/assetKind/Instance

The application of the pattern is explained in the following.

The concept identifier of a Class follows the pattern

<AAS Class name>

This also applies to abstract classes and types including enumerations.

Valid examples:

AAS:Submodel

AAS:Qualifier

AAS:Reference

AAS:ContentType

AAS:KeyTypes

Attributes of classes are separated by "/". Inherited attributes can also be referenced in this way, if the concrete
referable is important in the context.

182

https://github.com/admin-shell-io/id?tab=readme-ov-file#identifier-scheme-and-description

Basic Pattern:

<AAS Class name>"/"<AAS Attribute Name>

Examples[13]:

AAS:Referable/idShort

AAS:Property/idShort

AAS:Qualifier/semanticId

This also applies to attributes of attributes, if the cardinality of the attributes involved is not greater than 1:

<AAS Class Name> "/" <AAS Attribute Name> [{ "/" <AAS Attribute Name>}*]

Valid examples:

AAS:Identifiable/administration/version

This also applies to values of enumerations:

<AAS Class Name>[{ "/" <AAS Attribute Name>}*]["/" <AAS Enumeration Value>]

Valid examples:

AAS:Key/type/Submodel

AAS:AasSubmodelElements/Submodel

In case of an attribute with a cardinality greater than 1, no further attributes or enumeration values can be added.

Valid examples:

AAS:Operation/inputVariable

AAS:AssetAdministrationShell/submodel

AAS:Submodel/submodelElement

AAS:ConceptDescription/isCaseOf

Invalid examples:

AAS:AssetAdministrationShell/submodel/administration/version

183

AAS:Submodel/submodelElement/idShort

AAS:Submodel/Property/idShort

Additional identifiers might be needed for specific serializations and mappings, e.g. for a set of Asset Administration
Shells or a set of available concept descriptions. Here, the Asset Administration Shell metamodel and specification
does not give any recommendations.

Data specification handling is special. Data specification templates do not belong to Part 1 of the Asset Administration
Shell. However, serializations only support the predefined data specification templates as stipulated in this
specification series, Part 3. Their corresponding name space qualifiers are defined individually.

Examples:

In xml and JSON, data specifications are embedded into the schema itself using the attribute
"embeddedDataSpecification". Here, no concept identifier shall be used.

Invalid example:

AAS:ConceptDescription/embeddedDataSpecifications

Valid example:

AAS:DataSpecificationContent

Handling Constraints

Constraints are prefixed with AASd- followed by a three-digit number. The "d" in "AASd-" was motivated by "in Detail".
The numbering of constraints is unique within namespace AASd; a number of a constraint that was removed will not
be used again.

Note: in the Annex listing the metamodel changes, constraints with prefix AASs- or AASc- are also listed. These
are security or data specification constraints, and are now part of the split document parts.

Overview Constraints

This annex gives an overview of the constraints contained in this document. No additional comments are added, for
details please refer to the normative parts of the specification.

For handling of constraints see Handling Constraints.

Constraint AASd-002: idShort of Referables shall only feature letters, digits, hyphen ("-") and underscore ("_");
starting mandatory with a letter, and not ending with a hyphen, i.e. ^[a-zA-Z][a-zA-Z0-9_-]*[a-zA-Z0-9_]+$.

Constraint AASd-005: If AdministrativeInformation/version is not specified, AdministrativeInformation/revision shall also
be unspecified. This means that a revision requires a version. If there is no version, there is no revision. Revision is
optional.

Constraint AASd-006: If both, the _value_ and the _valueId_ of a Qualifier are present, the value shall be identical to
the value of the referenced coded value in Qualifier/valueId.

Constraint AASd-007: If both the Property/value and the Property/valueId are present, the value of Property/value
shall be identical to the value of the referenced coded value in Property/valueId.

184

Constraint AASd-012: If both the MultiLanguageProperty/value and the MultiLanguageProperty/valueId are present,
the meaning must be the same for each string in a specific language, as specified in MultiLanguageProperty/valueId.

Constraint AASd-014: Either the attribute globalAssetId or specificAssetId of an _Entity_ must be set if
Entity/entityType is set to "SelfManagedEntity".

Constraint AASd-020: The value of Qualifier/value shall be consistent with the data type as defined in
Qualifier/valueType.

Constraint AASd-021: Every qualifiable shall only have one qualifier with the same Qualifier/valueType.

Constraint AASd-022: idShort of non-identifiable referables within the same name space shall be unique (case-
sensitive).

Constraint AASd-077: The name of an extension (Extension/name) within HasExtensions shall be unique.

Constraint AASd-107: If a first level child element in a SubmodelElementList has a semanticId, it shall be identical to
SubmodelElementList/semanticIdListElement.

Constraint AASd-108: All first level child elements in a SubmodelElementList shall have the same submodel element
type as specified in SubmodelElementList/typeValueListElement.

Constraint AASd-109: If _SubmodelElementList/typeValueListElement_ is equal to AasSubmodelElements/Property or
AasSubmodelElements/Range, SubmodelElementList/valueTypeListElement shall be set and all first level child
elements in the SubmodelElementList shall have the value type as specified in
SubmodelElementList/valueTypeListElement.

Constraint AASd-114: If two first level child elements in a SubmodelElementList have a semanticId, they shall be
identical.

Constraint AASd-115: If a first level child element in a SubmodelElementList does not specify a semanticId, the value
is assumed to be identical to SubmodelElementList/semanticIdListElement.

Constraint AASd-116: "globalAssetId" (case-insensitive) is a reserved key for SpecificAssetId/name with the semantics
as defined in https://admin-shell.io/aas/3/1/AssetInformation/globalAssetId.

Constraint AASd-117: idShort of non-identifiable Referables not being a direct child of a SubmodelElementList shall be
specified.

Constraint AASd-118: If a supplemental semantic ID (HasSemantics/supplementalSemanticId) is defined, there shall
also be a main semantic ID (HasSemantics/semanticId).

Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is equal to TemplateQualifier and the
qualified element inherits from HasKind, the qualified element shall be of kind _Template_ (_HasKind/kind_ =
Template)

Constraint AASd-121: For References, the value of Key/type of the first _key_ of _Reference/keys_ shall be one of
GloballyIdentifiables.

Constraint AASd-122: For external references, i.e. References with _Reference/type_ = ExternalReference, the value
of Key/type of the first key of _Reference/keys_ shall be one of GenericGloballyIdentifiables.

Constraint AASd-123: For model references, i.e. References with _Reference/type_ = ModelReference, the value of
Key/type of the first _key_ of _Reference/keys_ shall be one of AasIdentifiables.

Constraint AASd-124: For external references, i.e. References with _Reference/type_ = ExternalReference, the last
key of _Reference/keys_ shall be either one of GenericGloballyIdentifiables or one of GenericFragmentKeys.

Constraint AASd-125: For model references, i.e. References with Reference/type = ModelReference with more than
one key in _Reference/keys_, the value of Key/type of each of the keys following the first key of _Reference/keys_

185

shall be one of FragmentKeys.

Constraint AASd-126: For model references, i.e. References with _Reference/type_ = ModelReference with more than
one key in _Reference/keys,_ the value of Key/type of the last Key in the reference key chain may be one of
GenericFragmentKeys or no key at all shall have a value out of GenericFragmentKeys.

Constraint AASd-127: For model references, i.e. References with _Reference/type_ = ModelReference with more than
one key in _Reference/keys,_ a key with Key/type _FragmentReference_ shall be preceded by a key with Key/type
File or _Blob_. All other Asset Administration Shell fragments, i.e. Key/type values out of AasSubmodelElements ,
do not support fragments.

Constraint AASd-128: For model references, i.e. References with _Reference/type_ = ModelReference, the Key/value
of a Key preceded by a Key with Key/type = SubmodelElementList is an integer number denoting the position in the
array of the submodel element list.

Constraint AASd-129: If any Qualifier/kind value of a SubmodelElement/qualifier (attribute _qualifier_ inherited via
Qualifiable) is equal to TemplateQualifier, the submodel element shall be part of a submodel template, i.e. a
Submodel with Submodel/kind (attribute _kind_ inherited via HasKind) value equal to Template.

Constraint AASd-130: An attribute with data type "string" shall be restricted to the characters as defined in XML
Schema 1.0, i.e. the string shall consist of these characters only: ^[\x09\x0A\x0D\x20-\uD7FF\uE000-
\uFFFD\u00010000-\u0010FFFF]*$.

Constraint AASd-131: The globalAssetId or at least one specificAssetId shall be defined for AssetInformation.

Constraint AASd-133: SpecificAssetId/externalSubjectId shall be a global reference, i.e. Reference/type =
ExternalReference.

Constraint AASd-134: For an Operation, the idShort of all inputVariable/value, outputVariable/value, and
inoutputVariable/value shall be unique.

Usage Metamodel

Composite I4.0 Components

As described in Life Cycle with Type Assets and Instance Assets, there is a class of relationships between assets of
different hierarchy levels. In this class of relationships, automation equipment is explained as a complex, interrelated
graph of automation devices and products, performing intelligent production and self-learning/optimization tasks.

Details and examples for composite I4.0 Components can be found in [13].

The following modelling elements in the Asset Administration Shell metamodel can be used to realize such composite
I4.0 Components:

• RelationshipElement, used to describe relationships between assets and other elements,

• Submodel, where a complex asset is composed out of other entities and assets, which are specified in a bill of
material together with their relationship to each other.

Note: the submodel template defining the structure of such a bill of material is not predefined by the Asset
Administration Shell metamodel. However, Entity elements were designed for the purpose of building bills of
material.

• Not every entity (Entity) that is part of the bill of material of an asset necessarily has its own Asset Administration
Shell. As described in [13], self-managed entities are distinguished from co-managed entities (Entity/entityType).

1. Self-Managed Entities have their own Asset Administration Shell. This is why a reference to this asset is
specified via Entity/globalAssetId or an Entity/specificAssetId. Additionally, further property statements
(Entity/statement) [16] can be added to the asset that are not specified in the Asset Administration Shell of the

186

asset itself, since they are specified in relation to the composite I4.0 Component only.

2. There is no separate Asset Administration Shell for co-managed entities. The relationships and property
statements of such entities are managed within the Asset Administration Shell of the composite I4.0
Component.

Figure 88 shows an extract of the metamodel containing the most important elements to describe composite I4.0
Components.

AssetInformation

+assetKind: AssetKind
+globalAssetId:
Identifier[0..1]
+specificAssetId:
SpecificAssetId[0..*]
+assetType: Identifier[0..1]
+defaultThumbnail:
Resource[0..1]

SpecificAssetId
HasSemantics

+name: LabelType
+value: Identifier
+externalSubjectId:
Reference[0..1]

Entity

+statement:
SubmodelElement[0..*]
+entityType:
EntityType[0..1]
+globalAssetId:
Identifier[0..1]
+specificAssetId:
SpecificAssetId[0..*]

«enumeration»
EntityType

CoManagedEntity
SelfManagedEntity

AssetAdministrationShell
Identif iable

HasDataSpecification

+derivedFrom:
Reference[0..1]
+assetInformation:
AssetInformation
+submodel: Reference[0..*]

Submodel

Identif iable
HasKind

HasSemantics
Qualifiable

HasDataSpecification

+submodelElement:
SubmodelElement[0..*]

«abstract»
SubmodelElement

Referable
HasSemantics

Qualifiable
HasDataSpecification

RelationshipElement
SubmodelElement

+first: Reference[0..1]
+second: Reference[0..1]

Reference

+submodel 0. .*

Reference

+der ivedFrom 0..1

Figure 88. Extract From Metamodel for Composite I4.0 Components

Metamodel With Inheritance

In this annex, some UML diagrams are shown together with all attributes inherited for a better overview.

187

External Concept Definitions

«external»
Property Definition

IEC 61360

AssetAdministrationShell
Identif iable

HasDataSpecification

+derivedFrom:
Reference[0..1]

+assetInformation:
AssetInformation

+submodel: Reference[0..*]

+administration:
AdministrativeInformation[0..1]

+ id: Identifier

::Identifiable

+idShor t: IdShortType[0..1]
+displayName:

MultiLanguageNameType[0..1]
+description:

MultiLanguageTextType[0..1]
+category: NameType[0..1]

«Deprecated»

::Referable

+extension: Extension[0..*]
::HasExtensions

+dataSpecification:
Reference[0..*]

::HasDataSpecification

AssetInformation

+assetKind: AssetKind
+globalAssetId:
Identifier[0..1]
+specificAssetId:
SpecificAssetId[0..*]
+assetType: Identifier[0..1]
+defaultThumbnail:
Resource[0..1]

AdministrativeInformation
HasDataSpecification

+version: VersionType[0..1]
+revision:

RevisionType[0..1]
+creator : Reference[0..1]

+templateId: Identifier[0..1]

+dataSpecification:
Reference[0..*]

::HasDataSpecification

«enumeration»
AssetKind

Type
Instance
Role
NotApplicable

SpecificAssetId
HasSemantics

+name: LabelType
+value: Identifier

+externalSubjectId:
Reference[0..1]

+semanticId:
Reference[0..1]

+supplementalSemanticId:
Reference[0..*]

::HasSemantics

Submodel

Identif iable
HasKind

HasSemantics
Qualifiable

HasDataSpecification

+submodelElement:
SubmodelElement[0..*]

+administration:
AdministrativeInformation[0..1]

+ id: Identifier

::Identifiable

+idShor t: IdShortType[0..1]
+displayName:

MultiLanguageNameType[0..1]
+description:

MultiLanguageTextType[0..1]
+category: NameType[0..1]

«Deprecated»

::Referable

+extension: Extension[0..*]
::HasExtensions

+kind: ModellingKind[0..1]
::HasKind

+semanticId:
Reference[0..1]

+supplementalSemanticId:
Reference[0..*]

::HasSemantics

+qualifier: Qualifier[0..*]
::Qualifiable

+dataSpecification:
Reference[0..*]

::HasDataSpecification

«abstract»
SubmodelElement

Referable
HasSemantics

Qualifiable
HasDataSpecification

+idShor t: IdShortType[0..1]
+displayName:

MultiLanguageNameType[0..1]
+description:

MultiLanguageTextType[0..1]
+category: NameType[0..1]

«Deprecated»

::Referable

+extension: Extension[0..*]
::HasExtensions

+semanticId:
Reference[0..1]

+supplementalSemanticId:
Reference[0..*]

::HasSemantics

+qualifier: Qualifier[0..*]
::Qualifiable

+dataSpecification:
Reference[0..*]

::HasDataSpecification

Qualifier
HasSemantics

+kind: QualifierKind[0..1]
«Experimental»

+type: QualifierType
+valueType:

DataTypeDefXsd
+value: ValueDataType[0..1]

+valueId: Reference[0..1]

+semanticId:
Reference[0..1]

+supplementalSemanticId:
Reference[0..*]

::HasSemantics

Property
DataElement

+valueType:
DataTypeDefXsd

+value: ValueDataType[0..1]
+valueId: Reference[0..1]

+idShor t: IdShortType[0..1]
+displayName:

MultiLanguageNameType[0..1]
+description:

MultiLanguageTextType[0..1]
+category: NameType[0..1]

«Deprecated»

::Referable

+extension: Extension[0..*]
::HasExtensions

+semanticId:
Reference[0..1]

+supplementalSemanticId:
Reference[0..*]

::HasSemantics

+qualifier: Qualifier[0..*]
::Qualifiable

+dataSpecification:
Reference[0..*]

::HasDataSpecification

Exemplary Submodel Element
"Property",

other submodel element
subtypes

include operations, collections,
files
etc.

Reference

submodel
0..*

Reference

derivedFrom
0..1

«external global
reference»

Figure 89. Selected Classes of Metamodel with Inherited Attributes

188

Model for Submodel Elements with Inherited Attributes

Failed to generate image: PlantUML preprocessing failed: [From <input> (line 24)]

@startuml
!include <c4/C4_Context.puml>
!include <C4/C4>
' C4-PlantUML

...

... (skipping 45920 lines)

...
 +extension: Extension[0..*]
 .. ::HasSemantics ..
 +semanticId: Reference[0..1]
 +supplementalSemanticId: Reference[0..*]
 .. ::Qualifiable ..
 +qualifier: Qualifier[0..*]
 .. ::HasDataSpecification ..
 +dataSpecification: Reference[0..*]
}

!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/RO ...
class RelationshipElement<SubmodelElement> {
 +first: Reference[0..1]
 +second: Reference[0..1]
}
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/RO ...
class AnnotatedRelationshipElement<RelationshipElement> {
 +annotation: DataElement[0..*]
}
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/RO ...
^^^^^
 Cannot open URL

@startuml

!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/submodel-
element.puml
abstract class SubmodelElement {
 .. ::Referable ..
 +idShort: IdShortType[0..1]
 +displayName: MultiLanguageNameType[0..1]
 +description: MultiLanguageTextType[0..1]
 +category: NameType[0..1] <<Deprecated>>
 .. ::HasExtensions ..
 +extension: Extension[0..*]

189

 .. ::HasSemantics ..
 +semanticId: Reference[0..1]
 +supplementalSemanticId: Reference[0..*]
 .. ::Qualifiable ..
 +qualifier: Qualifier[0..*]
 .. ::HasDataSpecification ..
 +dataSpecification: Reference[0..*]
}

!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-
01001/modules/ROOT/partials/diagrams/classes/relationship-element.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/annotated-
relationship-element.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/container-
element.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/data-
element.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-
01001/modules/ROOT/partials/diagrams/classes/property.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/multi-
language-property.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/range.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/blob.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/file.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/reference-
element.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-
01001/modules/ROOT/partials/diagrams/classes/capability.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/submodel-
element-list.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/submodel-
element-collection.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-
01001/modules/ROOT/partials/diagrams/classes/entity.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/event-
element.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-

190

metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/basic-
event-element.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-
01001/modules/ROOT/partials/diagrams/classes/operation.puml
!include https://raw.githubusercontent.com/admin-shell-io/aas-specs-
metamodel/master/documentation/IDTA-01001/modules/ROOT/partials/diagrams/classes/operation-
variable.puml

AnnotatedRelationshipElement .> DataElement
DataElement <|--- Blob
DataElement <|-- File
DataElement <|--- MultiLanguageProperty
DataElement <|-- Property
DataElement <|-- Range
DataElement <|-- ReferenceElement
Entity ..> SubmodelElement
EventElement <|-- BasicEventElement
Operation ..> OperationVariable
OperationVariable ..> SubmodelElement
RelationshipElement <|-- AnnotatedRelationshipElement
SubmodelElement <|-- AnnotatedRelationshipElement
SubmodelElement <|-- Capability
SubmodelElement <|-- DataElement
SubmodelElement <|--- Entity
SubmodelElement <|--- EventElement
SubmodelElement <|-- Operation
SubmodelElement <|--- RelationshipElement
SubmodelElement<|-- SubmodelElementCollection
SubmodelElement <|--- SubmodelElementList
SubmodelElementCollection ..> SubmodelElement
SubmodelElementList ..> SubmodelElement
@enduml

[3] URLs are also URIs

[4] Such additional asset identifiers are contained in AssetInformation/specificAssetIds.

[5] Note: in version V1.0 of this specification, idShort was optional for identifiables. This changed in V2.0: idShort was set to mandatory for all
referables. With V3.0, idShort was again made optional.

[6] Semantic mapping files are also used in ECLASS between ECLASS Classic and ECLASS Advanced: https://eclass.eu/support/technical-
specification/data-model/basic-advanced-mapping

[7] This is the format used for semantic mapping in ECLASS: https://eclass.eu/fileadmin/Redaktion/pdf-
Dateien/Wiki/ECLASSXML_3.0/ECLASS_XML/mapping.xsd

[8] The example only contains arbitrary IRDIs and does not represent a real-world example.

[9] The example only contains arbitrary IRDIs and does not represent a real-world example.

[10] Create, Retrieve, Update, Delete

[11] Navigability notation was often used in the past according to an informal convention, whereby non-navigable ends were assumed to be owned
by the Association whereas navigable ends were assumed to be owned by the Classifier at the opposite end. This convention is now deprecated.
Aggregation type, navigability, and end ownership are separate concepts, each with their own explicit notation. Association ends owned by classes
are always navigable, while those owned by associations may be navigable or not." [35]

[12] Exception: multiple inheritance is used in this specification, but only in case of inheriting from abstract classes.

[13] For simplicity reasons, most examples use the namespace qualifier and not the full path of the namespace.

191

https://eclass.eu/support/technical-specification/data-model/basic-advanced-mapping
https://eclass.eu/support/technical-specification/data-model/basic-advanced-mapping
https://eclass.eu/fileadmin/Redaktion/pdf-Dateien/Wiki/ECLASSXML_3.0/ECLASS_XML/mapping.xsd
https://eclass.eu/fileadmin/Redaktion/pdf-Dateien/Wiki/ECLASSXML_3.0/ECLASS_XML/mapping.xsd

Change Log

General

The change notes list the notable changes made to the document.

Non-backward compatible changes (nc) are marked as such.

• nc="x" means not backward compatible, if no value is added in the table, the change is backward compatible.

• nc="(x)" means that the change made was implicitly contained or stated in the document before and is now being
formalized. Therefore, the change is considered to be backward compatible.

The change notes for a version consist of three parts:

• changes w.r.t. previous version,

• new elements in metamodel w.r.t previous version,

• new, changed, or removed Constraints w.r.t previous version.

If there are no changes the corresponding tables are omitted.

Note: before V3.0, the security metamodel (now IDTA-01004) and the predefined data specifications (now IDTA-
01003 series) were also part of this document. They had separate sections and tables documenting the
changes.

Changes V3.1.1 vs. V3.1

Bugfixes:

• CHANGED: fix xml schema w.r.t. ordering of attributes (#585)

Changes V3.1 vs. V3.0.2

Major Changes:

• ADDED: New value "Role" to enumeration AssetKind (#294)

• ADDED: New logical enumerations "AasContainerSubmodelElements" and
"AasNonContainerSubmodelElements" (#420)

• CHANGED: Data type Identifier: change length from 2000 to 2048 characters (#306)

• CHANGED: Data type ContentType: change length from 100 to 128 characters

• CHANGED: Referable/idShort and Constraint AASd-002: now also allows hyphens to be included in name (#295)

• CHANGED: Entity/entityType and Constraint AASd-014: entityType now optional (#287)

• CHANGED: Change RelationshipElement: attributes "first" and "second" now optional (conformant to "min" and
"max" of "Range")(#412), AnnotatedRelationshipElement inherits from RelationshipElement and is thus also
affected.

• CHANGED: Change File and Blob: attribute "contentType" now optional (#412)

• CHANGED: Value-Only Schema adapted to changes in classes Entity, RelationshipElement etc.

• REMOVED: remove AASd-120: idShort also allowed for elements within a SubmodelElementList (#432)

• REMOVED: remove AASd-090: category is deprecated (#514)

• CHANGED: Relaxation of grammar for semantic IDs for metamodel elements in the context of data specifications
(#307)

• CHANGED: Terms and Definitions adopted to IEC 63278-1:2023 (before IEC 63278-1 Draft July 2022 was the
basis), (#365) also abbreviations partly adopted; changes:

192

https://github.com/admin-shell-io/aas-specs-metamodel/issues/585
https://github.com/admin-shell-io/aas-specs-metamodel/issues/294
https://github.com/admin-shell-io/aas-specs-metamodel/issues/420
https://github.com/admin-shell-io/aas-specs-metamodel/issues/306
https://github.com/admin-shell-io/aas-specs-metamodel/issues/295
https://github.com/admin-shell-io/aas-specs-metamodel/issues/287
https://github.com/admin-shell-io/aas-specs-metamodel/issues/412
https://github.com/admin-shell-io/aas-specs-metamodel/issues/412
https://github.com/admin-shell-io/aas-specs-metamodel/issues/432
https://github.com/admin-shell-io/aas-specs-metamodel/issues/514
https://github.com/admin-shell-io/aas-specs-metamodel/issues/307
https://github.com/admin-shell-io/aas-specs-metamodel/issues/365

- CHANGED: asset

- CHANGED: digital representation (example only)

- REMOVED: ontology

- CHANGED: service

- REMOVED: smart manufacturing

- CHANGED: Submodel

- CHANGED: Submodel template

- CHANGED: Submodel template element

- REMOVED: technical functionality

• CHANGED: Terms and Definitions, updates:

- CHANGED: Note 7 removed from term "property"

• CHANGED: Update clause on matching algorithm for references, include handling of supplementalSemanticIds,
isCaseOf etc. (#350, #471, #473, #479, #347)

• ADDED:(Editorial) Adding metamodel element IDs to tables themselves for easier usage (besides grammar
defining how to derive them) (#366)

• CHANGED: Update all metamodel element IDs to V3.1 (#366)

• CHANGED: Transfer of clauses on formats Metadata, Paths and Value-Only from Part 2 API to Part 1 Metamodel
(#325)

• CHANGED: (Editorial) Update clause on Value-Only Serialization, improve documentation (#370, #371, #411)

- ADDED: add table similar to metadata table: which attributes are displayed in Value-Only serialization

- CHANGED: update examples to provide Value-Only serialization for every submodel element (not in the
context of a Submodel as before)

- ADDED: add clause for Submodel Example (with properties from SMT Technical Data, not Families any
longer)

• CHANGED: update Schema for JSON-Value Serialization (#389)

• REMOVED: remove recommendation to use external references for semanticId (#376) and related attributes like
valueId, semanticIdListElement and isCaseOf (#396, #396)

• ADDED: add note: A maximum recursion depth of 32 for Container-Elements should be supported. This means for
certification a maximum of 32 recursion test cases should be tested. (#333)

• REMOVED: remove clauses on OPC UA and AutomationML mappings (#373, #397)

• CHANGED: update explanatory text and notes in the context of AdministrativeInformation (#331)

• CHANGED: move chapter "General" to Annex

• REMOVED: remove Annex "Requirements"

• CHANGED: move Clause "Semantic Identifiers for Metamodel and Data Specifications" from main part to Annex

- CHANGED: no plural 's' any longer, i.e. only semantic identifiers for attributes and classes

• CHANGED: Transfer from .docx to asciidoc (.adoc) and maintenance in GitHub (including (#318, #316)

• CHANGED: Transfer of all UML figures to PlantUML (.puml), changed notation for model references; maintenance
in GitHub, no XMI presenation part of release any longer (#439)

Bugfixes:

• CHANGED: add missing <referredSemanticId> to grammar for textual representation of References #557)

• CHANGED: enhance and correct examples for LangStringSet so that they correspond to their concrete
serialization in XML, JSON and RDF

193

https://github.com/admin-shell-io/aas-specs-metamodel/issues/350
https://github.com/admin-shell-io/aas-specs-metamodel/issues/471
https://github.com/admin-shell-io/aas-specs-metamodel/issues/473
https://github.com/admin-shell-io/aas-specs-metamodel/issues/479
https://github.com/admin-shell-io/aas-specs-metamodel/issues/347
https://github.com/admin-shell-io/aas-specs-metamodel/issues/366
https://github.com/admin-shell-io/aas-specs-metamodel/issues/366
https://github.com/admin-shell-io/aas-specs-metamodel/issues/325
https://github.com/admin-shell-io/aas-specs-metamodel/issues/370
https://github.com/admin-shell-io/aas-specs-metamodel/issues/371
https://github.com/admin-shell-io/aas-specs-metamodel/issues/411
https://github.com/admin-shell-io/aas-specs-metamodel/issues/389
https://github.com/admin-shell-io/aas-specs-metamodel/issues/376
https://github.com/admin-shell-io/aas-specs-metamodel/issues/396
https://github.com/admin-shell-io/aas-specs-metamodel/issues/396
https://github.com/admin-shell-io/aas-specs-metamodel/issues/333
https://github.com/admin-shell-io/aas-specs-metamodel/issues/373
https://github.com/admin-shell-io/aas-specs-metamodel/issues/397
https://github.com/admin-shell-io/aas-specs-metamodel/issues/331
https://github.com/admin-shell-io/aas-specs-metamodel/issues/318
https://github.com/admin-shell-io/aas-specs-metamodel/issues/316
https://github.com/admin-shell-io/aas-specs-metamodel/issues/439
https://github.com/admin-shell-io/aas-specs/issues/557

Editorial Bugfixes:

• CHANGED: improve formulation of constraints, use "shall" instead of "needs to" etc.

Minor Changes:

• CHANGED: add new data type "DateTimeUtc" and use it for attribute lastUpdate of BasicEventElement and
attribute timeStamp of EventPayload (#498)

• CHANGED: change recommendation for recursion: from "[..] maximum recursion depth of 32 [..]" to "A recursion
depth of 32 should not be exceeded. The recommendation is to have not more than 8 recursions in a submodel.
Test engines should test at least 16 recursions."

• add Annex with overview of constraints (#509)

• CHANGED: update Constraint AASd-116 (#298)

• REMOVED: remove information on OPC UA mapping (#373)

• REMOVED: remove information on AutomationML mapping (#397)

• REMOVED: remove notes or change notes to paragraphs in Annex "General"

• CHANGED: update bibliography (newer versions, link update, removal of entries not referenced)

• CHANGED: consistent usage of idShortPath and IRDI-Path (#385)

• ADDED: add example for deprecated attribute in class in Annex UML

• ADDED: enhanced explanation for AASd-130

• CHANGED: change explanation of Entity/statement to singular for consistency

• REMOVED: AdministrativeInformation - remove note 2: since submodels with different versions shall have
different identifiers, it is possible that an Asset Administration Shell has two submodels with the same semanticId
but different versions.

• REMOVED: remove [23] from bibliography and remove corresponding notes referring to it

• REMOVED: statement w.r.t. CLSID

• CHANGED: editorial changes (including #345, #361, #385)

Metamodel Changes V3.1 vs. V3.0.2

Template 21. Changes in Metamodel

Nc V3.1 Change w.r.t. V3.0.2 Comment

AssetKind Add new value "Role" to enumeration AssetKind

BasicEventElement/lastUpdate change data type from dateTime to DateTimeUtc

Blob/contentType now optional

ContentType data type: change length from 100 to 128 characters

Entity/entityType now optional

EventPayload/timeStamp change data type from dateTime to DateTimeUtc

File/contentType now optional

Identifier data type: change length from 2000 to 2048 characters

194

https://github.com/admin-shell-io/aas-specs-metamodel/issues/498
https://github.com/admin-shell-io/aas-specs-metamodel/issues/509
https://github.com/admin-shell-io/aas-specs-metamodel/issues/298
https://github.com/admin-shell-io/aas-specs-metamodel/issues/373
https://github.com/admin-shell-io/aas-specs-metamodel/issues/397
https://github.com/admin-shell-io/aas-specs-metamodel/issues/385
https://github.com/admin-shell-io/aas-specs-metamodel/issues/345
https://github.com/admin-shell-io/aas-specs-metamodel/issues/361
https://github.com/admin-shell-io/aas-specs-metamodel/issues/385

Nc V3.1 Change w.r.t. V3.0.2 Comment

Referable/idShort implicit change because constraint AASd-002 now also
allows hyphen

RelationshipElement/first now optional

RelationshipElement/second now optional

Template 22. New Elements in Metamodel

New Elements V3.1 vs V3.0.2 Comment

AasContainerSubmodelElements New enumeration for container submodel elements

AasNonContainerSubmodelElements New enumeration for non-container submodel elements

DateTimeUtc New data type

AssetKind/Role New value in enumeration

Template 23. New, Changed or Removed Constraints

Nc V3.1 vs.
V3.0

New, Update,
Removed,
Reformulated

Comment

AASd-
002

Update now also allows hyphens to be included in name

Constraint AASd-002: idShort of Referables shall only feature letters, digits,
hyphen ("-") and underscore (""); starting mandatory with a letter, and not
ending with a hyphen, i.e. ^[a-zA-Z][a-zA-Z0-9-]*[a-zA-Z0-9_]+$.].

AASd-
006

Update use "shall" instead of "need"

Constraint AASd-006: If both, the value and the valueId of a Qualifier are
present, the value needs to be identical to the value of the referenced coded
value in Qualifier/valueId.

changed to

Constraint AASd-006: If both, the value and the valueId of a Qualifier are
present, the value shall be identical to the value of the referenced coded value
in Qualifier/valueId.

AASd-
007

Update use "shall" instead of "need"

Constraint AASd-007: If both the Property/value and the Property/valueId are
present, the value of Property/value needs to be identical to the value of the
referenced coded value in Property/valueId.

changed to

Constraint AASd-007: If both the Property/value and the Property/valueId are
present, the value of Property/value shall be identical to the value of the
referenced coded value in Property/valueId.

195

Nc V3.1 vs.
V3.0

New, Update,
Removed,
Reformulated

Comment

AASd-
014

Update Change since Entity/entityType is now optional

Constraint AASd-014: Either the attribute globalAssetId or specificAssetId of an
Entity must be set if Entity/entityType is set to "SelfManagedEntity".

AASd-
021

Update use "shall" instead of "can"

Constraint AASd-021: Every qualifiable can only have one qualifier with the
same Qualifier/valueType.

changed to Constraint AASd-021: Every qualifiable shall only have one qualifier
with the same Qualifier/valueType.

AASd-
077

Update use "shall" instead of "need"

Constraint AASd-077: The name of an extension (Extension/name) within
HasExtensions needs to be unique.

changed to

Constraint AASd-077: The name of an extension (Extension/name) within
HasExtensions shall be unique.

AASd-
090

Removed Constraint AASd-090: For data elements, category (inherited by Referable)
shall be one of the following values: CONSTANT, PARAMETER or VARIABLE.
Default: VARIABLE

AASd-
116

Update Update version of globalAssetId

Constraint AASd-116: "globalAssetId" (case-insensitive) is a reserved key for
SpecificAssetId/name with the semantics as defined in https://admin-
shell.io/aas/3/1/AssetInformation/globalAssetId.

AASd-
120

Removed Constraint AASd-120: idShort of submodel elements being a direct child of a
SubmodelElementList shall not be specified.

Changes V3.0.2 vs. V3.0.1

Major Bugfixes:

• CHANGED: Environment does not inherit from "Reference" (figure and schemas were correct)

Other Bugfixes:

• CHANGED: Replace xs:dateType with xs:dateTime (#467)

• CHANGED: Improve description of example for Reference (#481)

• CHANGED: UML Template description with respect to cardinality (#388)

• CHANGED: Constraint AASd-119 Class name is "HasKind", not "hasKind"

Metamodel Changes V3.0.2 vs. V3.0.1

Template 24. Changes in Metamodel

196

https://github.com/admin-shell-io/aas-specs-metamodel/issues/467
https://github.com/admin-shell-io/aas-specs-metamodel/issues/481
https://github.com/admin-shell-io/aas-specs-metamodel/issues/388

Nc V3.0.2 Change w.r.t. V3.0.1 Comment

(x) Environment does not inherit from "Reference"

Template 25. New, Changed or Removed Constraints

Nc V3.0.2
vs.
V3.0.1

New, Update,
Removed,
Reformulated

Comment

AASd-
119

Update correct class name from "hasKind" to "HasKind"

Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is
equal to TemplateQualifier and the qualified element inherits from HasKind, the
qualified element shall be of kind Template (HasKind/kind = "Template")

Changes V3.0.1 vs. V3.0

Major Bugfixes:

• CHANGED: DataTypeDefXsd all links now reference correctly to XML Schema 1.0 (xmlschema-2) not to XML
Schema V1.1 (xmlschema11-2) (#312, #363), i.e. remove xs:yearMonthDuration + editorial changes (remove
redundant entries, sort entries. Additionally, added notes that RDF is using XML Schema 1.1 but a subset.

• CHANGED: support relative path for SubmodelElement File, PathType: support complete URI scheme for files
RFC2396 conformant to anyURI of XML Schema 1.0, Part 2 (#299)

• CHANGED: Constraint AASd-116 globalAssetId + added note that globalAssetId should only be used in discovery
functionality but not as value for SpecificAssetId/name (#390)

• CHANGED: make EmbeddedDataSpecification/dataSpecification mandatory (as implemented in schemas) (#296)

• CHANGED: Update on handling AASd-130 for schemas different to xml and reformulation of Constraint AASd-130
(#362)

• CHANGED: (Editorial): updated Change Logs of V3.0 w.r.t. Range: Range was set to experimental in V3.0

• CHANGED: (Editorial, the schemas implemented it like this) Annex UML Tables: "0..*" or "0..3" etc. means that the
list may be either not available (optional) or the list is not empty. (#418)

• CHANGED: (Editorial, the schemas implemented it like this, table was correct) Update Figure containing
Resource: Resource/path has cardinality 1 and Resource/contentType has cardinality 0..1 (#438)

Other Bugfixes:

• (Editorial) Fix Figure Logical Model for Keys of References (add value Referable to AASReferables, remove
Referable from AasReferableNonIdentifiables (enumeration table were correct) (used in Constraints only).

• (Editorial) MultiLanguageNameType inconsistent description, maxLength=128 (schemata were correct) (#313)

• (Editorial) HasKind/kind explanatory text: use template, not type (#313)

• (Editorial) Qualifier/Kind changed to Qualifier/kind (typo in table, UML and schema correct)

• (Editorial) BasicEventElement/Direction and BasicEventElement/State changed to BasicEventElement/direction
and BasicEventElement/state typo in table, UML and schema correct)

• Fix figure for DataTypeDefXsd: ordering was not correct, xs:float moved to its place

• (Editorial) fix figure "Association" in Annex for UML (#328)

• (Editorial) change recommendation to use a global reference to use an external reference, same for
externalSubjectId: it is an external reference.

• (Editorial) JSON and XML Schema references to GitHub admin-shell-io reformulated

197

https://github.com/admin-shell-io/aas-specs-metamodel/issues/312
https://github.com/admin-shell-io/aas-specs-metamodel/issues/363
https://github.com/admin-shell-io/aas-specs-metamodel/issues/299
https://github.com/admin-shell-io/aas-specs-metamodel/issues/390
https://github.com/admin-shell-io/aas-specs-metamodel/issues/296
https://github.com/admin-shell-io/aas-specs-metamodel/issues/362
https://github.com/admin-shell-io/aas-specs-metamodel/issues/418
https://github.com/admin-shell-io/aas-specs-metamodel/issues/438
https://github.com/admin-shell-io/aas-specs-metamodel/issues/313
https://github.com/admin-shell-io/aas-specs-metamodel/issues/313
https://github.com/admin-shell-io/aas-specs-metamodel/issues/328

• (Editorial) correct Figure 23 Metamodel of an AssetAdministrationShell: arrow removed from association between
Submodel and AssetAdministrationShell

• (Editorial) update deprecated web links

• (Editorial) correct information in Changes V3.0 vs. V3.0RC02 w.r.t. VersionType and RevisionType

• Update links and names of documents in Bibliography

Metamodel Changes V3.0.1 vs. V3.0

Template 26. Changes in Metamodel

Nc V3.1 Change w.r.t. V3.0 Comment

(x) BasicEventElement/Direction (bugfix in Text only) attribute starts with small letter

(x) BasicEventElement/State (bugfix in Text only) attribute starts with small letter

x DataTypeDefXsd BUGFIX: Remove xs:yearMonthDuration from
enumeration

Updated links to XML Schema 1.0 (not 1.1)

(x) EmbeddedDataSpecification/dataSpecification (bugfix in Text only) now mandatory

File/value Type was extended, see PathType

(x) MultiLanguageNameType (bugfix in Text only) maxLength=128 (as derived and
implemented)

PathType string instead of Identifier but with same length
constraints

extend data type to support complete URI scheme for
files RFC2396

(x) Qualifier/Kind (bugfix in Text only) attribute starts with small letter

Resource/path Type was extended, see PathType

Template 27. New, Changed or Removed Constraints

Nc V3.0 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

x AASd-
116

Update Constraint AASd-116: "globalAssetId" (case-insensitive) is a reserved key. If
used as value for SpecificAssetId/name, SpecificAssetId/value shall be identical
to AssetInformation/globalAssetId.

to

Constraint AASd-116: "globalAssetId" (case-insensitive) is a reserved key for
SpecificAssetId/name with the semantics as defined in https://admin-
shell.io/aas/3/0/AssetInformation/globalAssetId.

198

Nc V3.0 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

AASd-
130

Reformulated Constraint AASd-130: an attribute with data type "string" shall consist of these
characters only: ^[\x09\x0A\x0D\x20-\uD7FF\uE000-\uFFFD\u00010000-
\u0010FFFF]*$.

to

Constraint AASd-130: An attribute with data type "string" shall be restricted to
the characters as defined in XML Schema 1.0, i.e. the string shall consist of
these characters only: ^[\x09\x0A\x0D\x20-\uD7FF\uE000-\uFFFD\u00010000-
\u0010FFFF]*$.

Changes V3.0 vs. V2.0.1

Major Changes:

• Document split into several documents: Part 1 on metamodel of the AAS (this document), Part 5 on the aasx
package exchange format, Part 3 series on the predefined data specifications, and Part 4 (security)

• CHANGED: Split of SubmodelElementCollection into SubmodelElementList (with orderRelevant) and
SubmodelElementCollection

• CHANGED: Reference type and referredSemanticId added to Reference; Local and Parent attributes removed
from Reference. Logical enumeration concept updated. Some renaming and some new enumerations. Constraint
added for references. Grammar for text serialization updated.

• CHANGED: idType from Identifier removed, ID now string

• CHANGED: idShort of Referable now optional + Constraints added with respect to ID and idShort, includes that
idShort of Submodels etc. no longer need to be unique in the context of an AssetAdministrationShell

• CHANGED: semanticId no longer mandatory but recommended for SubmodelElement. semanticId now
recommended not only for submodel instance but also for submodel template

• NEW: supplemental Semantic IDs

• CHANGED: SubmodelElements do no longer inherit from HasKind, only Submodel has distinction between
submodel template or submodel instance (including update of tAAS-#18 and -#19)

• CHANGED: Revised concept on handling of Asset and assetIdentificationModel (assetInformation), Asset
removed, no Asset/billOfMaterial any longer. Specific asset IDs added.

• CHANGED: Attributes with type "string" were substituted by string types with length restrictions + some more
constraints on string handling. LangStringSet handling updated.

• REMOVED: ConceptDictionaries removed, no longer supported

• REMOVED: Views removed, no longer supported

• NEW: Events now experimental parts of normative part (including renaming and smaller changes)

• NEW: Besides type assets and instance assets, assets for which this kind of classification is not applicable are
also supported (conformant to IEC 63278-1)

• REMOVED: Security attribute removed from Asset Administration Shell, Access Control remains part of the
specification

• ENHANCED: DataTypeIEC61360 extended with values for IRI, IRDI, BLOB, FILE + corresponding new constraints
added

• CHANGED: Handling of attributes with xsd-related types like DataTypeDef. New types introduced.

• NEW: hasExtensions introduced

199

• CHANGED: In some mappings or serializations, the type "Reference" is converted into a single string. In this case,
it is now required (and not only recommended) to use the defined string serialization.

• CHANGED: Extracted and not part of this specification any longer; mapping rules for different serializations +
Schemata + Example in different serializations

• CHANGED: Referable/category set to <<Deprecated>>

• CHANGED: Range set to <<Experimental>>

• NEW: Besides <<Deprecated>>, new stereotype <<Experimental>> introduced

• NEW: Qualifier/kind introduced (ValueQualifier, TemplateQualifier, ConceptQualifier)

• CHANGED: Terms and Definitions updated to be conformant to IEC 63278-1 DRAFT, July 2022 (note: this
document contains more terms and definitions than IEC 63278-1 and vice versa: not all terms and definitions from
IEC 63278-1 are included). Definition of view removed. Definition of service added from Part 2.

• CHANGED: Description of ModellingKind

• Parent attribute in Referables removed

• NEW: Two new terms introduced: coded value and explicit value

• CHANGED: Updated grammar on how to define semantic identifiers for metamodel elements of this specification

• CHANGED: Blob type changed from byte[0..*] to base64Binary

• NEW: Appendix for Backus-Naur form (BNF) + update of all grammars using BNF and variants so that they are
using consistent grammar language

• NEW: Clause on embedded data specifications

• EDITORIAL: Text updated, no kind column any longer in class tables, instead notation of
ModelReference<{Referable}>. New table for Primitives/Data Types

• EDITORIAL: New clause "Introduction"

• EDITORIAL: New clause "Matching strategies for semantic identifiers"

• EDITORIAL (REMOVED): Clause on Tooling and Open Source removed

• EDITORIAL: Vector graphics

• NEW: Constraints implicitly contained in text were formalized and numbered (normative)

• NEW: Environment explicitly part of UML (was part of serializations from the beginning)

Bugfixes:

• Corrected Japanese example for xd:string

• HasDataSpecification/embeddedDataSpecs 0..* not 0..1

• Qualifier is and never was abstract (Constraint was), table was correct, UML corrected

• Correct AASd-051: VIEW no longer supported

• Type of SubmodelElementList/typeValueListElement corrected to AasSubmodelElements (before
SubmodelElementElements)

• Missing table for enumeration ReferenceTypes added

• Bugfix table specifications w.r.t. kind of attribute (from aggr to attr – column kind was removed, see above)

Smaller changes:

• EDITORIAL: Qualifier description updated

• EDITORIAL: Reformulation of constraints dealing with References and Key/type

• EDITORIAL: Examples now with https: and not http:

• EDITORIAL: Footnotes reused

200

• EDITORIAL: Added explanation for annotated relationship elements

• EDITORIAL: Asset type and asset instance now type asset and instance asset (conformant to IEC 63278-1)

• EDITORIAL: example for langString serialization changed (table 6)

Metamodel Changes V3.0 vs. V2.0.1

Template 28. Changes

Nc V3.0 Change w.r.t. V2.0.1 Comment

anySimpleTypeDef Type removed, was no longer used in any class
definition, was mentioned in text only.

x Asset Removed, asset referenced via
AssetInformation/globalAssetId only

x AssetAdministrationShell/asset Removed, substituted by
AssetAdministrationShell/assetInformation (but no
reference any longer, instead now aggregation)

x AssetAdministrationShell/conceptDictionaries Removed

x AssetAdministrationShell/security Removed

Note: Security is still part of the Asset
Administration Shell, but the Asset Administration
Shell and its elements are referenced from
Security.

x AssetAdministrationShell/view Removed, Views no longer supported

AssetKind/Instance Updated description of value "Instance" of enumeration
"AssetKind" conformant to IEC 63278-1

AssetKind/Type Updated description of value "Type" of enumeration
"AssetKind" conformant to IEC 63278-1

x BasicEvent Renamed to BasicEventElement and set to
<<Experimental>>

x[2] BlobType Primitive changed from "group of bytes" to Base64Binary

x ConceptDictionary Removed

x Constraint Abstract class removed. Formula now used in Security
part only

x DataSpecification No longer inherits from Identifiable. However, same
attribute names and types

x DataSpecification/description Type changed from LangStringSet to
MultiLanguageTextType, thus adding a length constraint

DataSpecificationContent Stereotype <<Template>> added

201

Nc V3.0 Change w.r.t. V2.0.1 Comment

(x) DataTypeDef Removed and split into DataTypeDefXsd and
DataTypeDefRdf. Some types excluded and not
supported because now XML Schema 1.0 reference
+ Before: just string allowing any xsd simple type as
string
+ + added prefix xs: or rdf:, resp., to every value in
enumeration

x Entity/asset Removed, substituted by Entity/globalAssetId and
Entity/specificAssetId

x Event Renamed to EventElement

x File/mimeType Renamed to contentType + Type changed from
MimeType to ContentType

x Formula Now abstract class

Formula now used in Security part only

x HasKind/kind Type changed from ModelingKind to ModellingKind

x Identifiable/identification Removed
+ Substituted by Identifiable/id

x IdentifiableElements Renamed to AasIdentifiables

x Identifier Type changed

Before struct class with two attributes: id and idType.
Now string data type only.

Maximum length defined: 2,000 characters

IdentifierType Enumeration removed because no idType any longer

x Key/idType removed

x Key/local Local attribute removed.

x Key/value Type changed from string to Identifier, thus adding a
length constraint

(x) KeyElements Renamed to KeyTypes

The elements remain, except for new
SubmodelElementList, and renamed submodel elements
Event and BasicEvent to EventElement and
BasicEventElement

KeyType Enumeration removed because no Key/idType any longer

LocalKeyType Enumeration removed because no Key/idType any longer

x MimeType Type name changed to ContentType

202

Nc V3.0 Change w.r.t. V2.0.1 Comment

x MultiLanguageProperty/value Type changed from LangStringSet to
MultiLanguageTextType, thus adding a length constraint

x PathType Same as Identifier, i.e. length constraint added

Property/valueType Type changed from DataTypeDef to DataTypeDefXsd

x Qualifiable/qualifier Type changed from Constraint to Qualifier

Qualifier No longer inherits from abstract class "Constraint"

Qualifier/valueType Type changed from DataTypeDef to DataTypeDefXsd

x QualifierType Type changed from string to NameType (i.e. length
constraint added)

Range set to <<Experimental>>

Range/valueType Type changed from DataTypeDef to DataTypeDefXsd

x Referable/category Type changed from string to NameType (i.e. length
constraint added)

Set to deprecated

x Referable/description Type changed from string to MultiLanguageTextType,
thus adding length constraint

Referable/idShort Now optional, was mandatory

Type changed from string to NameType (i.e. length
constraint added)

x Referable/parent Parent attribute removed.

x ReferableElement/BasicEvent Renamed to BasicEventElement

Now part of AasSubmodelElements

x ReferableElements Substituted with enumeration AasSubmodelElements
and AasIdentifiables

x ReferableElements/AccessPermissionRule Removed from Enumeration, AccessPermissionRule is
not referable any longer

Not part of new AasReferableNonIdentifiables

x ReferableElements/Event Renamed to EventElement

Now part of AasSubmodelElements

x ReferenceTypes/GlobalReference Renamed to ExternalReference

RelationshipElement/first Type changes from model reference Referable to
Reference (global or model reference)

203

Nc V3.0 Change w.r.t. V2.0.1 Comment

RelationshipElement/second Type changes from model reference Referable to
Reference (global or model reference)

x[1] SubmodelElement/kind Removed. SubmodelElement no longer inherits from
HasKind

ValueDataType Before as specified via DataTypeDef, now any xsd
atomic type as specified via DataTypeDefXsd

x View Removed

Template 29. New Elements in Metamodel

New Elements V3.0 vs V2.0.1 Comment

AasIdentifiables New enumeration used for References, includes abstract
Identifiable
+ Before: Identifiables

AasReferableNonIdentifiables New enumeration used for References

AasReferables New enumeration used for References, includes abstract
Referable

AasSubmodelElements New enumeration used for References
+ Before: ReferableElements

AdministrativeInformation/creator New optional attribute

AdministrativeInformation/templateId New optional attribute

x AssetAdministrationShell/assetInformation Substitute for AssetAdministrationShell/asset; no reference
any longer, instead aggregation

AssetInformation with attributes/functionality from former class Asset
because not specific to Asset but AAS

AssetInformation/assetKind Former Asset/assetKind

AssetInformation/assetType New optional attribute

AssetInformation/globalAssetId Former Asset/identification/id

AssetInformation/specificAssetId Former Asset/assetIdentificationModel

AssetInformation/thumbnail Optional Attribute of new class AssetInformation that was
not available in Asset class before

AssetKind/NotApplicable New enumeration value

BasicEventElement Former BasicEvent
+ New <<Experimental>> submodel element for events

204

New Elements V3.0 vs V2.0.1 Comment

BasicEventElement/direction Was part of non-normative part before

BasicEventElement/lastUpdate Was part of non-normative part before

BasicEventElement/maxInterval Was part of non-normative part before
Type changed from dateTime to duration

BasicEventElement/messageBroker Was part of non-normative part before

BasicEventElement/messageTopic Was part of non-normative part before

BasicEventElement/minInterval Was part of non-normative part before
Type changed from dateTime to duration

BasicEventElement/observed Former name: BasicEvent/observed

BasicEventElement/state Was part of non-normative part before

ContentType Former name: MimeType
Maximum length defined: 100 characters

DataTypeDefRdf Enumeration for types of Rdf + added prefix rdf: to every
value in enumeration

DataTypeDefXsd Enumeration that corresponds to anySimpleTypes of XML
Schema 1.0
+ + added prefix xs: to every value in enumeration

dateTimeStamp New data type for metamodel as used in EventPayload

DataSpecification/administration Was inherited before by Identifiable

DataSpecification/id Was inherited before by Identifiable

DataSpecification/description Was inherited before by Identifiable

Direction New Enumeration for BasicEventElement

Entity/globalAssetId Former Entity/asset was split into globalAssetId and
specificAssetId

Entity/specificAssetId Former Entity/asset was split into globalAssetId and
specificAssetId

Environment New class for entry point for Asset Administration Shells,
submodels and concept descriptions.

EventElement Former name: Event
Set to <<Experimental>>

EventPayload New experimental class for event payload
Was part of non-normative part before

205

New Elements V3.0 vs V2.0.1 Comment

EventPayload/observableSemanticId Was part of non-normative part before

EventPayload/payload Was part of non-normative part before
Type changed from string to BlobType

EventPayload/source Was part of non-normative part before
Type changed from ModelReference(Referable) to
ModelReference(EventElement)

EventPayload/sourceSemanticId Was part of non-normative part before

EventPayload/subjectId Was part of non-normative part before

EventPayload/timestamp Was part of non-normative part before
Type changed from dateTimeStamp to dateTime because
restriction to types of XML Schema 1.0 that does not
contain dateTimeStamp. dateTimeStamp is a derived type
of dateTime in XML Schema 1.1

EventPayload/topic Was part of non-normative part before
Type changed from string to MessageTopicType (i.e. length
constraint added, maximum 255 characters)

Extension New class, part of new abstract class HasExtensions

Extension/name

Extension/refersTo

Extension/valueType

Extension/valueType

File/contentType Former File/mimeType

FragmentKeys New enumeration used for References

GenericFragmentKeys New enumeration used for References

GenericGloballyIdentifiers New enumeration used for References

GloballyIdentifiables New enumeration used for References

HasExtensions New abstract class, inherited by Referable

HasSemantics/supplementalSemanticId New attribute

Identifiable/id Substitute for Identifiable/identification

KeyTypes Before: KeyElements
+ New submodel element SubmodelElementList added,
renamed submodel elements Event and BasicEvent to
EventElement and BasicEventElement

206

New Elements V3.0 vs V2.0.1 Comment

LabelType New string type with maximum 64 characters

MessageTopicType New string type with maximum 255 characters

ModellingKind Renamed enumeration, before: ModelingKind

MultiLanguageNameType Substitute for LangStringSet with short multi-language
strings, maximum 64 characters

MultiLanguageTextType Substitute for LangStringSet with long multi-language
strings, maximum 64 characters

NameType New string type with maximum 128 characters

Qualifier/kind New experimental attribute for Qualifier

QualifierKind New enumeration for Qualifier/kind

Referable/displayName New optional attribute for all referables

Reference/referredSemanticId New optional attribute for Reference

Reference/type New mandatory attribute for Reference

ReferenceTypes New enumeration for Reference/type

ReferenceTypes/ExternalReference Enumeration value, was named GlobalReference before

Resource new type for AssetInformation/defaultThumbnail

ShortNameType New string type with maximum 64 characters

SpecificAssetId New type for AssetInformation/specificAssetId

SpecificAssetId/externalSubjectId See Attribute Based Access Control (ABAC) for subject
concept

SpecificAssetId/name New type for AssetInformation/specificAssetId

SpecificAssetId/value New type for AssetInformation/specificAssetId

StateOfEvent New experimental enumeration for BasicEventElement

SubmodelElementElements Enumeration for submodel elements (split of
ReferableElements)

SubmodelElementList Before SubmodelElementCollection was used for lists and
collections

SubmodelElementList/orderRelevant Similar to SubmodelElementCollection/ordered

SubmodelElementList/semanticIdListElement Attribute of new class SubmodelElementList

207

New Elements V3.0 vs V2.0.1 Comment

SubmodelElementList/typeValueListElement Attribute of new class SubmodelElementList

SubmodelElementList/value Similar to SubmodelElementCollection/value but ordered
and with all elements having the same semanticId

SubmodelElementList/valueTypeListElement Attribute of new class SubmodelElementList

Template 30. New, Changed or Removed Constraints

Nc V3.0 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

AASd-
001

Removed Constraint AASd-001: In case a referable element is not an identifiable element,
this ID is mandatory and used for referring to the element in its name space.

For namespace part see AASd-022

AASd-
002

Update Regular expression added

Constraint AASd-002: idShort of Referables shall only feature letters, digits,
underscore (""); starting mandatory with a letter, i.e. [a-zA-Z][a-zA-Z0-9]*.

AASd-
003

Removed See AASd-022

Constraint AASd-003: idShort of Referables within the same name space shall
be unique (case-sensitive).

AASd-
006

Reformulated Constraint AASd-006: If both, the value and the valueId of a Qualifier are
present, the value needs to be identical to the value of the referenced coded
value in Qualifier/valueId.

AASd-
005

Reformulated Constraint AASd-005: If AdministrativeInformation/version is not specified,
AdministrativeInformation/revision shall also be unspecified. This means that a
revision requires a version. If there is no version, there is no revision either.
Revision is optional.

AASd-
007

Reformulated Constraint AASd-007: If both the Property/value and the Property/valueId are
present, the value of Property/value needs to be identical to the value of the
referenced coded value in Property/valueId.

AASd-
008

Removed Constraint AASd-008: The submodel element value of an operation variable
shall be of kind=Template.

AASd-
010

Renamed Renamed and reformulated to AASs-010

Not part of this document any longer but of part security

AASd-
011

Renamed Renamed and reformulated to AASs-011

Not part of this document any longer but of part security

208

Nc V3.0 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

AASd-
012

Reformulated Constraint AASd-012: If both the MultiLanguageProperty/value and the
MultiLanguageProperty/valueId are present, the meaning must be the same for
each string in a specific language, as specified in
MultiLanguageProperty/valueId

AASd-
014

Reformulated Entity was changed

Constraint AASd-014: Either the attribute globalAssetId or specificAssetId of an
Entity must be set if Entity/entityType is set to "SelfManagedEntity". Otherwise,
they do not exist.

AASd-
115

Reformulated Constraint AASd-115: If a first level child element in a SubmodelElementList
does not specify a semanticId, the value is assumed to be identical to
SubmodelElementList/semanticIdListElement.

AASd-
118

Reformulated Constraint AASd-118: If a supplemental semantic ID
(HasSemantics/supplementalSemanticId) is defined, there shall also be a main
semantic ID (HasSemantics/semanticId).

AASd-
119

Reformulated Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is
equal to TemplateQualifier and the qualified element inherits from "hasKind",
the qualified element shall be of kind Template (HasKind/kind = "Template").

(x) AASd-
020

New Constraint AASd-020: The value of Property/value shall be consistent to the
data type as defined in Property/valueType.

(x) AASd-
021

New Constraint AASd-021: Every qualifiable can only have one qualifier with the
same Qualifier/type.

AASd-
022

New Added case-sensitivity for idShort (since AASd-003 was removed)

Constraint AASd-022: idShort of non-identifiable referables within the same
name space shall be unique (case-sensitive)

AASd-
129

Reformulated Constraint AASd-129: If any Qualifier/kind value of a SubmodelElement/qualifier
(attribute qualifier inherited via Qualifiable) is equal to TemplateQualifier, the
submodel element shall be part of a submodel template, i.e. a Submodel with
Submodel/kind (attribute kind inherited via HasKind) value equal to Template.

AASd-
077

New Constraint AASd-077: The name of an extension (Extension/name) within
HasExtensions needs to be unique.

AASd-
090

New Constraint AASd-090: For data elements, category (inherited by Referable) shall
be one of the following values: CONSTANT, PARAMETER or VARIABLE.
Default: VARIABLE

AASd-
107

New Constraint AASd-107: If a first level child element in a SubmodelElementList
has a semanticId, it shall be identical to
SubmodelElementList/semanticIdListElement.

AASd-
108

New Constraint AASd-108: All first level child elements in a SubmodelElementList
shall have the same submodel element type as specified in
SubmodelElementList/typeValueListElement.

209

Nc V3.0 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

AASd-
109

New Constraint AASd-109: If SubmodelElementList/typeValueListElement is equal to
Property or Range, SubmodelElementList/valueTypeListElement shall be set
and all first level child elements in the SubmodelElementList shall have the
value type as specified in SubmodelElementList/valueTypeListElement.

AASd-
114

New Constraint AASd-114: If two first level child elements in a SubmodelElementList
have a semanticId, they shall be identical.

AASd-
115

New Constraint AASd-115: If a first level child element in a SubmodelElementList
does not specify a semanticId, the value is assumed to be identical to
SubmodelElementList/semanticIdListElement.

AASd-
116

New Constraint AASd-116: "globalAssetId" (case-insensitive) is a reserved key. If
used as value for SpecificAssetId/name, IdentifierKeyValuePair/value shall be
identical to AssetInformation/globalAssetId.

AASd-
117

New Constraint AASd-117: idShort of non-identifiable Referables not being a direct
child of a SubmodelElementList shall be specified.

AASd-
118

New Because of new attribute supplementalSemanticId for HasSemantics

Constraint AASd-118: If a supplemental semantic ID
(HasSemantics/supplementalSemanticId) is defined, there shall also be a main
semantic ID (HasSemantics/semanticId).

AASd-
119

New New Qualifier/kind attribute

Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is
equal to TemplateQualifier and the qualified element inherits from "hasKind",
the qualified element shall be of kind Template (HasKind/kind = "Template").

AASd-
120

New Constraint AASd-120: idShort of submodel elements being a direct child of a
SubmodelElementList shall not be specified.

AASd-
121

New Constraint AASd-121: For References, the value of Key/type of the first key of
Reference/keys shall be one of GloballyIdentifiables.

AASd-
122

New Constraint AASd-122: For external references, i.e. References with
Reference/type = ExternalReference, the value of Key/type of the first key of
Reference/keys shall be one of GenericGloballyIdentifiables.

AASd-
123

New Constraint AASd-123: For model references, i.e. References with
Reference/type = ModelReference, the value of Key/type of the first key of
Reference/keys shall be one of AasIdentifiables.

AASd-
124

New Constraint AASd-124: For external references, i.e. References with
Reference/type = ExternalReference, the last key of Reference/keys shall be
either one of GenericGloballyIdentifiables or one of GenericFragmentKeys.

AASd-
125

New Constraint AASd-125: For model references, i.e. References with
Reference/type = ModelReference with more than one key in Reference/keys,
the value of Key/type of each of the keys following the first key of
Reference/keys shall be one of FragmentKeys.

210

Nc V3.0 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

AASd-
126

New Constraint AASd-126: For model references, i.e. References with
Reference/type = ModelReference with more than one key in Reference/keys,
the value of Key/type of the last Key in the reference key chain may be one of
GenericFragmentKeys, or no key at all shall have a value out of
GenericFragmentKeys.

AASd-
127

New Constraint AASd-127: For model references, i.e. References with
Reference/type = ModelReference with more than one key in Reference/keys, a
key with Key/type FragmentReference shall be preceded by a key with Key/type
File or Blob. All other AAS fragments, i.e. Key/type values out of
AasSubmodelElements, do not support fragments.

AAS-128 New Constraint AASd-128: For model references, i.e. References with
Reference/type = ModelReference, the Key/value of a Key preceded by a Key
with Key/type=SubmodelElementList is an integer number denoting the position
in the array of the submodel element list.

AASd-
129

New Necessary as supplement for AASd-119 since SubmodelElement does not
inherit from HasKind any longer

Constraint AASd-129: If any Qualifier/kind value of a
SubmodelElement/qualifier (attribute qualifier inherited via Qualifiable) is equal
to TemplateQualifier, the submodel element shall be part of a submodel
template, i.e. a Submodel with Submodel/kind (attribute kind inherited via
HasKind) value equal to Template.

x AASd-
130

New ensures that encoding is possible and interoperability between different
serializations is possible.

Constraint AASd-130: An attribute with data type "string" shall consist of these
characters only: ^[\x09\x0A\x0D\x20-\uD7FF\uE000-\uFFFD\u00010000-
\u0010FFFF]*$.

(x) AASd-
131

New Constraint AASd-131: The globalAssetId or at least one specificAssetId shall be
defined for AssetInformation.

(x) AASd-
133

New Constraint AASd-133: SpecificAssetId/externalSubjectId shall be a global
reference, i.e. Reference/type = GlobalReference.

(x) AASd-
134

New Constraint AASd-134: For an Operation, the idShort of all inputVariable/value,
outputVariable/value and inoutputVariable/value shall be unique.

x AASd-
135

New Constraint AASd-135: AdministrativeInformation/version shall have a length of
maximum 4 characters.

x AASd-
136

New Constraint AASd-136: AdministrativeInformation/revision shall have a length of
maximum 4 characters.

Changes V3.0 vs. V3.0RC02

Major changes:

• Document split into several documents: Part 1 on metamodel of the AAS (this document), Part 5 on the aasx

211

package exchange format, Part 3 series on the predefined data specifications, and Part 4 (security)

• CHANGED: SubmodelElements do not inherit from HasKind any longer, only Submodel has distinction between
submodel template or submodel instance (including update of tAAS-#18 and -#19)

• NEW: New Constraint for valid strings (AASd-130)

• NEW: Length constraints added for many string attributes, in most cases by introducing new string types

• CHANGED: renamed ReferenceTypes/GlobalReference to ReferenceTypes/ExternalReference (text serialization
of references and constraints updated accordingly)

• CHANGED: Type of globalAsset is now Identifier and not Reference (AssetInformation and Entity)

• CHANGED: Updated text for submodel element collections

• EDITORIAL: Examples for matching references

• CHANGED: Terms and definitions updated to be conformant to IEC 63278-1 DRAFT, July 2022 (note: this
document contains more terms and definitions than IEC 63278-1 and vice versa; not all terms and definitions from
IEC 63278-1 are included). Definition of view removed. Definition of service added from Part 2.

• CHANGED: Description of ModellingKind

• NEW: Appendix for Backus-Naur form (BNF), including update of all grammars using BNF and variants for
consistent grammar language usage

• ENHANCED: Extended grammar (referredSemanticId) for text serialization of <Reference>

• CHANGED: Grammar on how to define semantic identifiers for metamodel elements of this specification:
<Character> definition in <Namespace> (before "an unreserved character permitted by DIN SPEC 91406", now
regular expression [a..zA..Z-])

• CHANGED: In some mappings or serializations, the type "Reference" is converted into a single string. In this case,
it is now required (instead of just recommended) to use the defined string serialization.

• CHANGED: Type of BlobType changed from "group of bytes" to "base64Binary"

• NEW: Two new terms introduced: coded value and explicit value

• REMOVED: Referable/checksum

• CHANGED: EventElements including all classes introduced for Events set to <<Experimental>>

• CHANGED: Referable/category set to <<Deprecated>>

• CHANGED: Range set to <<Experimental>>

• CHANGED: AdministrativeInformation Class, not data type

• NEW: New stereotype <<Experimental>> introduced besides <<Deprecated>>

• CHANGED: Qualifier/kind set to <<Experimental>>

• CHANGED: enumeration DataTypeDefXsd for data types for valueType attribute (e..g. in Property) as well as
enumeration DataTypeDefRdf (for consistency) + restriction to XML Schema 1.0 (not 1.1.)

• EDITORIAL (REMOVED): Clause on Tooling and Open Source

• EDITORIAL: vector graphics

• NEW: Besides type assets and instance assets now also assets for which this kind of classification is not
applicable are supported (conformant to IEC 63278-1)

Bugfixes: * Corrected Japanese example for xd:string * UML figure for HasExtensions did not show inheritance (table
for Extension was correct) * HasDataSpecification/embeddedDataSpecs 0..* not 0..1 * Qualifier is and never was
abstract (Constraint was), table was correct, UML corrected * Correct AASd-051: VIEW no longer supported * Type of
SubmodelElementList/typeValueListElement corrected to AasSubmodelElements (before SubmodelElementElements)
* Correct text serialization of <Reference> * Added missing table for enumeration ReferenceTypes * AASd-117 it is not
the SubmodelElementList having no idShort but its childs * KeyTypes Table: set of AasReferables added

Smaller changes:

212

• EDITORIAL: Qualifier description updated

• EDITORIAL: Reformulation of constraints dealing with References and Key/type

• EDITORIAL: Examples now with https: and not http:

• EDITORIAL: Footnotes reused

• EDITORIAL: Added explanation for annotated relationship elements

• EDITORIAL: asset type and asset instance now type asset and instance asset (conformant to IEC 63278-1)

• EDITORIAL: example for langString serialization changed (table 6)

Metamodel Changes V3.0 vs. V3.0RC02

Template 31. Changes

nc V3.0 Change w.r.t. V3.0RC02 Comment

AdministrativeInformation Stereotype <<dataType>> removed

AssetInformation/externalSubjectId Not mandatory any longer; now optional

x AssetInformation/globalAssetId Type changed from Reference to Identifier

AssetKind/Type Updated description of value "Type" of enumeration "AssetKind"
conformant to IEC 63278-1

AssetKind/Instance Updated description of value "Instance" of enumeration "AssetKind" -
conformant to IEC 63278-1

BasicEventElement Set to <<Experimental>>

x BasicEventElement/messageTopic Type changed from string to MessageTopicType (i.e. length constraint
added, maximum 255 characters)

x BasicEventElement/minInterval Type changed from dateTime to duration

x BasicEventElement/maxInterval Type changed from dateTime to duration

(x)
[3]

BlobType Primitive changed from "group of bytes" to Base64Binary

ContentType Maximum length defined: 100 characters

decimalBuildInTypes Removed

durationBuildInTypes Removed

x DataSpecification/description Type changed from LangStringSet to MultiLanguageTextType; length
constraint added

x DataTypeDefRdf/langString Added prefix "rdf:", i.e. change from langString to rdf:langString

x DateTypeDefXsd/dateTimeStamp Removed since not part of XML Schema 1.0

x DataTypeDefXsd/dayTimeDuration Removed since not part of XML Schema 1.0

213

nc V3.0 Change w.r.t. V3.0RC02 Comment

x DataTypeDefXsd/yearMonthDuratio
n

Removed since not part of XML Schema 1.0

Direction Set to <<Experimental>>

x Entity/globalAssetId Type changed from Reference to Identifier

x Extension/name Type changed from string to NameType; length constraint added

EventElement Set to <<Experimental>>

EventElement/duration Type changed from dateTimeStamp to dateTime

EventPayload Set to <<Experimental>>

EventPayload/payload Type changed from string to BlobType

EventPayload/source Type changed from ModelReference(Referable) to
ModelReference(EventElement)

EventPayload/timestamp Type changed from dateTimeStamp to dateTime because restriction to
types of XML Schema 1.0 that does not contain dateTimeStamp.
dateTimeStamp is a derived type of dateTime in XML Schema 1.1

EventPayload/topic Type changed from string to MessageTopicType (i.e. length constraint
added, maximum 255 characters)

x HasKind/kind Type changed from ModelingKind to ModellingKind

x Identifier Maximum length defined: 2,000 characters

x Key/value Type changed from string to Identifier; length constraint added

x MultiLanguageProperty/value Type changed from LangStringSet to MultiLanguageTextType; length
constraint added

x PathType Same as Identifier; length constraint added

PrimitiveTypes Removed

Qualifier/kind Set to <<Experimental>>

x QualifierType Type changed from string to NameType; length constraint added

rdfBuildInTypes Removed

Range Set to <<Experimental>>

x Referable/category Type changed from string to NameType; length constraint added

Category set to deprecated

x Referable/checksum Removed

214

nc V3.0 Change w.r.t. V3.0RC02 Comment

x Referable/displayName Type changed from string to MultiLanguageNameType; length
constraint added

Text how to select a suitable display name removed; now explained in
Table 2

x Referable/description Type changed from string to MultiLanguageTextType; length constraint
added

x Referable/idShort Type changed from string to NameType; length constraint added

x ReferenceTypes/GlobalReference Renamed to ExternalReference

Resource Stereotype <<DataType>> removed.

StateOfEvent Set to <<Experimental>>

x SpecificAssetId/name Type changed from string to LabelType (a string with length constraint)

x SpecificAssetId/value Type changed from string to Identifier (because of length constraint)

x
[4]

SubmodelElement/kind Removed. SubmodelElement does not inherit from HasKind any longer

Template 32. New Elements in Metamodel

nc V3.0 vs. V3.0RC02 New Elements Comment

AdministrativeInformation/creator New optional attribute

AdministrativeInformation/templateId New optional attribute

AssetInformation/assetType New optional attribute

AssetKind/NotApplicable New enumeration value

LabelType New string type with maximum 64 characters

MessageTopicType New string type with maximum 255 characters

ModellingKind Renamed enumeration, before: ModelingKind

MultiLanguageNameType Substitute for LangStringSet with short multi-language
strings, maximum 64 characters

MultiLanguageTextType Substitute for LangStringSet with long multi-language
strings, maximum 64 characters

NameType New string type with maximum 128 characters

ReferenceTypes/ExternalReference Enumeration value: before: GlobalReference

215

nc V3.0 vs. V3.0RC02 New Elements Comment

RevisionType New type for AdministrativeInformation/revision with
length constraints and regular expression

ShortNameType New string type with maximum 64 characters

VersionType New type for AdministrativeInformation/version with
length constraints and regular expression

Template 33. New, Changed or Removed Constraints

Nc V3.0 vs.
V3.0RC02

New, Update,
Removed,
Reformulated

Comment

EDITORIAL The following constraints were also updated with minor editorial changes:

Constraints AASd-121, AASd-122, AASd-123, AASd-124, AASd-125, AASd-
126, AASd-127, AASd-129

AASd-002 Reformulated Now min length 1, before 2

Constraint AASd-002: idShort of Referables shall only feature letters, digits,
underscore (""); starting mandatory with a letter, i.e. [a-zA-Z][a-zA-Z0-9]*.

AASd-003 Removed See AASd-022

Constraint AASd-003: idShort of Referables within the same name space
shall be unique (case-sensitive).

AASd-005 Reformulated Constraint AASd-005: If AdministrativeInformation/version is not specified,
AdministrativeInformation/revision shall also be unspecified. This means that
a revision requires a version. If there is no version, there is no revision.
Revision is optional.

AASd-006 Reformulated Constraint AASd-006: If both, the value and the valueId of a Qualifier are
present, the value needs to be identical to the value of the referenced coded
value in Qualifier/valueId.

AASd-007 Reformulated Constraint AASd-007: If both the Property/value and the Property/valueId are
present, the value of Property/value needs to be identical to the value of the
referenced coded value in Property/valueId.

AASd-012 Reformulated Constraint AASd-012: if both the MultiLanguageProperty/value and the
MultiLanguageProperty/valueId are present, the meaning must be the same
for each string in a specific language, as specified in
MultiLanguageProperty/valueId.

AASd-020 Reformulated Constraint AASd-020: The value of Qualifier/value shall be consistent with
the data type as defined in Qualifier/valueType.

AASd-022 Update Added case-sensitivity for idShort (since AASd-003 was removed)

Constraint AASd-022: idShort of non-identifiable Referables within the same
name space shall be unique (case-sensitive)

216

Nc V3.0 vs.
V3.0RC02

New, Update,
Removed,
Reformulated

Comment

AASd-027 Removed Not needed any longer since Type of idShort was changed to NameType and
NameType has a maximum length of 128 characters

Constraint AASd-027: idShort of Referables shall have a maximum length of
128 characters

AASd-077 Reformulated Constraint AASd-077: the name of an extension (Extension/name) within
HasExtensions needs to be unique

AASd-100 Removed Since new string types with length constraints were added, this constraint is
no longer needed

Constraint AASd-100: An attribute with data type "string" is not allowed to be
empty

AASd-109 Reformulated Constraint AASd-109: If SubmodelElementList/typeValueListElement is equal
to Property or Range, SubmodelElementList/valueTypeListElement shall be
set and all first level child elements in the SubmodelElementList shall have
the value type as specified in SubmodelElementList/valueTypeListElement.

AASd-115 Reformulated Constraint AASd-115: If a first level child element in a SubmodelElementList
does not specify a semanticId, the value is assumed to be identical to
SubmodelElementList/semanticIdListElement.

AASd-117 Bugfix Constraint AASd-117: idShort of non-identifiable Referables not being a
direct child of a SubmodelElementList shall be specified.

AASd-118 Reformulated Constraint AASd-118: If a supplemental semantic ID
(HasSemantics/supplementalSemanticId) is defined, there shall also be a
main semantic ID (HasSemantics/semanticId).

AASd-119 Reformulated Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is
equal to TemplateQualifier and the qualified element inherits from "hasKind",
the qualified element shall be of kind Template (HasKind/kind = "Template").

AASd-120 Reformulated Constraint AASd-120: idShort of submodel elements being a direct child of a
SubmodelElementList shall not be specified.

AASd-121 Reformulated Constraint AASd-121: For References the value of Key/type of the first key of
Reference/keys shall be one of GloballyIdentifiables.

AASd-122 Reformulated Constraint AASd-122: For external references, i.e. References with
Reference/type = ExternalReference, the value of Key/type of the first key of
Reference/keys shall be one of GenericGloballyIdentifiables.

AASd-123 Reformulated Constraint AASd-123: For model references, i.e. References with
Reference/type = ModelReference, the value of Key/type of the first key of
Reference/keys shall be one of AasIdentifiables.

AASd-124 Reformulated Constraint AASd-124: For external references, i.e. References with
Reference/type = ExternalReference, the last key of Reference/keys shall be
either one of GenericGloballyIdentifiables or one of GenericFragmentKeys.

217

Nc V3.0 vs.
V3.0RC02

New, Update,
Removed,
Reformulated

Comment

AASd-125 Reformulated Constraint AASd-125: For model references, i.e. References with
Reference/type = ModelReference with more than one key in
Reference/keys, the value of Key/type of each of the keys following the first
key of Reference/keys shall be one of FragmentKeys.

AASd-126 Reformulated Constraint AASd-126: For model references, i.e. References with
Reference/type = ModelReference with more than one key in
Reference/keys, the value of Key/type of the last Key in the reference key
chain may be one of GenericFragmentKeys, or no key at all shall have a
value out of GenericFragmentKeys.

AASd-127 Reformulated Constraint AASd-127: For model references, i.e. References with
Reference/type = ModelReference with more than one key in
Reference/keys, a key with Key/type FragmentReference shall be preceded
by a key with Key/type File or Blob. All other AAS fragments, i.e. Key/type
values out of AasSubmodelElements, do not support fragments.

AASd-129 New Necessary as supplement for AASd-119, since SubmodelElement does not
inherit from HasKind any longer

Constraint AASd-129: If any Qualifier/kind value of a
SubmodelElement/qualifier (attribute qualifier inherited via Qualifiable) is
equal to TemplateQualifier, the submodel element shall be part of a
submodel template, i.e. a Submodel with Submodel/kind (attribute kind
inherited via HasKind) value to Template.

x AASd-130 New Ensures that encoding is possible and interoperability between different
serializations is possible.

Constraint AASd-130: An attribute with data type "string" shall consist of
these characters only: ^[\x09\x0A\x0D\x20-\uD7FF\uE000-
\uFFFD\u00010000-\u0010FFFF]*$.

(x) AASd-131 New Constraint AASd-131: The globalAssetId or at least one specificAssetId shall
be defined for AssetInformation.

(x) AASd-133 New Constraint AASd-133: specificAssetId/externalSubjectId shall be a global
reference, i.e. Reference/type = ExternalReference.

(x) AASd-134 New Constraint AASd-134: For an operation, the idShort of all inputVariable/value,
outputVariable/value, and inoutputVariable/value shall be unique.

AASd-051 Removed Since category is deprecated, this constraint was removed.

Views are no longer supported by metamodel

Constraint AASd-051: A ConceptDescription shall have one of the following
categories: VALUE, PROPERTY, REFERENCE, DOCUMENT, CAPABILITY,
RELATIONSHIP, COLLECTION, FUNCTION, EVENT, ENTITY,
APPLICATION_CLASS, QUALIFIER. Default: PROPERTY.

218

Changes V3.0RC02 vs. V2.0.1

Metamodel Changes V3.0RC02 vs. V2.0.1 w/o Security Part

Note: if you already implemented the changes made in V3.0RC01, please refer to the corresponding clause in
the annex. This annex is for readers familiar with V2.0.x only.

Major changes:

• CHANGED: Split of SubmodelElementCollection into SubmodelElementList (with orderRelevant) and
SubmodelElementCollection

• CHANGED: Reference type and referredSemanticId added to Reference; Local and Parent attributes removed
from Reference; logical enumeration concept updated. Some renaming and some new enumerations. Constraint
for References.

• CHANGED: Reference/type now as optional part of string serialization of reference

• CHANGED: idType from identifier removed, ID now string

• CHANGED: idShort of Referable now optional + Constraints added with respect to ID and idShort, includes that
idShort of Submodels etc. no longer need to be unique in the context of an Asset Administration Shell

• CHANGED: semanticId no longer mandatory for SubmodelElement

• CHANGED: Revised concept on handling of Asset and assetIdentificationModel (assetInformation), Asset
removed, no more Asset/billOfMaterial. any longer. Specific asset IDs added.

• REMOVED: ConceptDictionaries removed, because no longer supported

• REMOVED: Views removed, because no longer supported

• NEW: Event and BasicEvent updated and renamed to EventElement and BasicEventElement

• NEW: Checksum introduced for Referables

• REMOVED: security attribute removed from Asset Administration Shell; access control remains part of the
specification

• ENHANCED: DataTypeIEC61360 extended with values for IRI, IRDI, BLOB, FILE + corresponding new constraints
added

• ENHANCED: Removed and split into DataTypeDefXsd and DataTypeDefRdf. Some types are excluded and not
supported

• CHANGED: Mapping rules for different serializations + schemata + example in different serializations extracted
and no longer part of this specification

• EDITORIAL: Text updated, no kind column any longer in class tables, instead notation of
ModelReference<{Referable}>. New table for Primitives/Data Types

• EDITORIAL: New clause "Introduction"

• EDITORIAL: New clause "Matching strategies for semantic identifiers"

• NEW: Constraints implicitly contained in text were formalized and numbered (normative)

• NEW: Environment explicitly part of UML (was part of serializations from the beginning)

• NEW: supplemental Semantic IDs

• NEW: Qualifier/kind (TemplateQualifier, ConceptQualifier, ValueQualifier)

Bugfixes:

• bugfix annotation AnnotatedRelationship is of type aggr and not ref* (diagram was correct)

• bugfix specification of ValueList and ValueReferencePairType, no data types, normal classes

219

• bugfix table specifications w.r.t. kind of attribute (from aggr to attr – column kind was removed, see above)

• bugfix data type specification LangStringSet (no diagram and table any longer)

• bugfix enumeration ReferableElements, no ConceptDictionary any longer + new elements like new submodel
elements SubmodelElementList added.

Note: ReferableElements was substituted by AasSubmodelElements and Aas Identifiables.

• Entity/globalAssetId diagram (table was correct): Type change from reference of Reference* to Reference

Template 34. Changes w/o Security

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

AdministrativeInformation Bugfix: Stereotype "DataType" added

AnnotatedRelationship/annotation Bugfix: Type changed from
ModelReference<DataElement> to DataElement

anySimpleTypeDef Type removed, was no longer used in any class definition,
was mentioned in text only

x Asset Removed, asset referenced via
AssetInformation/globalAssetId only

x AssetAdministrationShell/asset Removed, substituted by
AssetAdministrationShell/assetInformation (no reference
any longer, instead now aggregation)

x AssetAdministrationShell/conceptDictionaries Removed

x AssetAdministrationShell/security Removed

Note: Security is still part of the Asset
Administration Shell, but the Asset Administration
Shell and its elements are referenced from Security.

AssetAdministrationShell/view Removed, views no longer supported

x BasicEvent Renamed to BasicEventElement

x ConceptDictionary Removed

x Constraint Abstract class removed. Formula now used in Security
part only

(x) DataTypeDef Removed and split into DataTypeDefXsd and
DataTypeDefRdf; some types excluded and not
supported (see notes in corresponding clause)

Before: just string allowing any xsd simple type as string

+ added prefix xs: or rdf:, resp. to every value in
enumeration

220

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

x Entity/asset Removed, substituted by Entity/globalAssetId and
Entity/specificAssetId

x Event Renamed to EventElement

x Extension/refersTo Type changed from Reference to ModelReference

x Extension/valueType Type changed from DataTypeDef to DataTypeDefXsd

x File/mimeType Renamed to contentType + Type changed from MimeType
to ContentType

x Formula Now abstract class

Formula now used in Security part only

x Formula/dependsOn Removed, since formula language not yet defined

x Identifiable/identification Removed

Substituted by Identifiable/id

x IdentifiableElements Renamed to AasIdentifiables

x Identifier Type changed

Before struct class with two attributes: id and idType; now
string data type only

IdentifierType Enumeration removed, because no idType any longer

x Key/idType removed

x Key/local Local attribute removed

(x) KeyElements Renamed to KeyTypes

Note: the elements remain, except for new
SubmodelElementList and renamed submodel
elements Event and BasicEvent to EventElement
and BasicEventElement

KeyType Enumeration removed because no Key/idType any longer

LocalKeyType Enumeration removed because no Key/idType any longer

x MimeType Type name changed to ContentType

Property/valueType Type changed from DataTypeDef to DataTypeDefXsd

x Qualifiable/qualifier Type changed from Constraint to Qualifier

Qualifier No longer inherits from abstract class "Constraint"

221

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

Qualifier/valueType Type changed from DataTypeDef to DataTypeDefXsd

Range/valueType Type changed from DataTypeDef to DataTypeDefXsd

Referable/idShort Now optional, was mandatory

x Referable/parent Parent attribute removed

x ReferableElements Substituted with enumeration AasSubmodelElements and
AasIdentifiables

x ReferableElements/AccessPermissionRule Removed from enumeration, AccessPermissionRule is no
longer referable

Not part of new AasReferableNonIdentifiables

x ReferableElement/BasicEvent Renamed to BasicEventElement

Now part of AasSubmodelElements

(x) ReferablesElements/ConceptDictionary Bugfix: ConceptDictionary removed from enumeration,
since ConceptDictionary no longer part of specification

Not part of new KeyTypes

x ReferableElements/Event Renamed to EventElement

Now part of AasSubmodelElements

RelationshipElement/first Type changes from model reference Referable to
Reference (global or model reference)

RelationshipElement/second Type changes from model reference Referable to
Reference (global or model reference)

ValueDataType Before as specified via DataTypeDef, now any xsd atomic
type as specified via DataTypeDefXsd

x View Removed

Template 35. New Elements in Metamodel w/o Security

nc V3.0RC02 vs. V2.0.1 New Elements Comment

AasSubmodelElements New enumeration used for References

Before: ReferableElements

AasIdentifiables New enumeration used for References,
includes abstract Identifiable

Before: Identifiables

AasReferableNonIdentifiables New enumeration used for References

222

nc V3.0RC02 vs. V2.0.1 New Elements Comment

AasReferables New enumeration used for References,
includes abstract Referable

x AssetAdministrationShell/assetInformation substitute for
AssetAdministrationShell/asset; no
reference any longer, instead now
aggregation

AssetInformation with attributes/functionality from former
class Asset, because not specific to
Asset but to AAS

AssetInformation/assetKind Former Asset/assetKind

AssetInformation/globalAssetId Former Asset/identification/id

AssetInformation/specificAssetId Former Asset/assetIdentificationModel

AssetInformation/thumbnail Optional Attribute of new class
AssetInformation that was not available
in Asset class before

BasicEventElement Former name: BasicEvent

Was part of non-normative part before

BasicEventElement/direction Former name: BasicEvent/observed

Was part of non-normative part before

BasicEventElement/lastUpdate Was part of non-normative part before

BasicEventElement/messageBroker Was part of non-normative part before

BasicEventElement/messageTopic Was part of non-normative part before

BasicEventElement/minInterval Was part of non-normative part before

BasicEventElement/maxInterval Was part of non-normative part before

BasicEventElement/observed Was part of non-normative part before

BasicEventElement/state Was part of non-normative part before

ContentType Former name: MimeType

dateTimeStamp New data type for metamodel as used
in EventPayload

DataTypeDefRdf Enumeration for types of Rdf + prefix
rdf: added to every value in
enumeration

223

nc V3.0RC02 vs. V2.0.1 New Elements Comment

DataTypeDefXsd Enumeration consisting of
enumerations

decimalBuildInTypes,
durationBuildInTypes, PrimitiveTypes
that correspond to anySimpleTypes of
xsd. + added prefix xs: to every value in
enumeration

Direction New enumeration for
BasicEventElement

Environment New class for entry point for Asset
Administration Shells, submodels and
concept descriptions

EventElement Former name: Event

EventPayload New class for event payload

EventPayload/observableSemanticId Was part of non-normative part before

EventPayload/payload Was part of non-normative part before

EventPayload/source Was part of non-normative part before

EventPayload/sourceSemanticId Was part of non-normative part before

EventPayload/subjectId Was part of non-normative part before

EventPayload/timestamp Was part of non-normative part before

Extension New class, part of new abstract class
HasExtensions

FragmentKeys New enumeration used for References

GenericFragmentKeys New enumeration used for References

GenericGloballyIdentifiers New enumeration used for References

GloballyIdentifiables New enumeration used for References

HasExtensions New abstract class, inherited by
Referable

HasSemantics/supplementalSemanticId New attribute

Identifiable/id Substitute for Identifiable/identification

IdentifierKeyValuePair New class for
AssetInformation/specificAssetId

224

nc V3.0RC02 vs. V2.0.1 New Elements Comment

KeyTypes Before: KeyElements

New submodel element
SubmodelElementList added,
submodel elements Event and
BasicEvent to EventElement and
BasicEventElement renamed

Qualifier/kind New attribute for Qualifier

QualifierKind New enumeration for Qualifier/kind

PrimitiveTypes Enumeration for DataTypeDefXsd

Referable/checksum New optional attribute for all referables

Referable/displayName New optional attribute for all referables

Reference/referredSemanticId New optional attribute for Reference

x Reference/type New mandatory attribute for Reference

ReferenceTypes New enumeration for Reference/type

StateOfEvent New enumeration for
BasicEventElement

SpecificAssetId New type for
AssetInformation/specificAssetId

SpecificAssetId/name New type for
AssetInformation/specificAssetId

SpecificAssetId/value New type for
AssetInformation/specificAssetId

SpecificAssetId/externalSubjectId New type for
AssetInformation/specificAssetId

See Attribute Based Access Control
(ABAC) for subject concept

SubmodelElementElements Enumeration for submodel elements
(split of ReferableElements)

SubmodelElementList Before SubmodelElementCollection
was used for lists and structs

SubmodelElementList/orderRelevant Similar to
SubmodelElementCollection/ordered

225

nc V3.0RC02 vs. V2.0.1 New Elements Comment

SubmodelElementList/value Similar to
SubmodelElementCollection/value but
ordered and with all elements having
the same semanticId

SubmodelElementList/semanticIdListElement Attribute of new class
SubmodelElementList

SubmodelElementList/typeValueListElement Attribute of new class
SubmodelElementList

SubmodelElementList/valueTypeListElement Attribute of new class
SubmodelElementList

Template 36. New, Changed or Removed Constraints w/o Security

Nc V3.0RC02
vs. V2.0.1

New, Update,
Removed,
Reformulate
d

Comment

AASd-001 Removed Constraint AASd-001: In case of a referable element not being an identifiable
element this ID is mandatory and used for referring to the element in its name
space.

For namespace part see AASd-022

[5] AASd-003 Update idShort is case-sensitive and not case-insensitive

Constraint AASd-003: idShort of Referables shall be matched case-sensitive.

AASd-005 Reformulated Constraint AASd-005: If AdministrativeInformation/version is not specified than
also AdministrativeInformation/revision shall be unspecified. This means, a
revision requires a version. if there is no version there is no revision neither.
Revision is optional.

AASd-008 Removed Constraint AASd-008: The submodel element value of an operation variable
shall be of kind=Template.

AASd-010 Renamed Renamed and reformulated to AASs-010 (see NEW)

AASd-011 Renamed Renamed and reformulated to AASs-011 (see NEW)

AASd-012 Reformulated Constraint AASd-012: If both, the MultiLanguageProperty/value and the
MultiLanguageProperty/valueId are present then for each string in a specific
language the meaning must be the same as specified in
MultiLanguageProperty/valueId

AASd-014 Reformulated Entity was changed

Constraint AASd-014: Either the attribute globalAssetId or specificAssetId of an
Entity must be set if Entity/entityType is set to "SelfManagedEntity". They are
not existing otherwise.

226

Nc V3.0RC02
vs. V2.0.1

New, Update,
Removed,
Reformulate
d

Comment

(x) AASd-020 New Constraint AASd-020: The value of Property/value shall be consistent to the
data type as defined in Property/valueType.

(x) AASd-021 New Constraint AASd-021: Every qualifiable can only have one qualifier with the
same Qualifier/type.

AASd-023 Removed No Asset any longer that can be referenced as alternative to global reference

Constraint AASd-023: AssetInformation/globalAssetId either is a reference to
an Asset object or a global reference.

x AASd-027 New Constraint AASd-027: idShort of Referables shall have a maximum length of
128 characters.

x AASd-076 Removed Substituted by AASc-002; simplified, no reference to concept description

AASd-077 New Constraint AASd-077: The name of an extension within HasExtensions needs to
be unique.

x AASd-076 Removed Substituted by AASc-002; simplified, no reference to concept description

AASd-077 New Constraint AASd-077: The name of an extension within HasExtensions needs to
be unique.

AASd-090 Update Exception: File and Blob data elements removed. Reformulated.

Constraint AASd-090: For data elements category (inherited by Referable) shall
be one of the following values: CONSTANT, PARAMETER or VARIABLE.
Default: VARIABLE

AASd-100 New Constraint AASd-100: An attribute with data type "string" is not allowed to be
empty.

AASd-107 New Constraint AASd-107: If a first level child element in a SubmodelElementList
has a semanticId it shall be identical to
SubmodelElementList/semanticIdListElement.

AASd-108 New Constraint AASd-108: All first level child elements in a SubmodelElementList
shall have the same submodel element type as specified in
SubmodelElementList/typeValueListElement.

AASd-109 New Constraint AASd-109: If SubmodelElementList/typeValueListElement equal to
Property or Range SubmodelElementList/valueTypeListElement shall be set
and all first level child elements in the SubmodelElementList shall have the
value type as specified in SubmodelElementList/valueTypeListElement.

AASd-114 New Constraint AASd-114: If two first level child elements in a SubmodelElementList
have a semanticId then they shall be identical.

227

Nc V3.0RC02
vs. V2.0.1

New, Update,
Removed,
Reformulate
d

Comment

AASd-115 New Constraint AASd-115: If a first level child element in a SubmodelElementList
does not specify a semanticId then the value is assumed to be identical to
SubmodelElementList/semanticIdListElement.

AASd-116 New Constraint AASd-116: "globalAssetId" (case-insensitive) is a reserved key. If
used as value for SpecificAssetId/name IdentifierKeyValuePair/value shall be
identical to AssetInformation/globalAssetId.

AASd-117 New Needed because Referable/idShort now optional

Constraint AASd-117: idShort of non-identifiable Referables not equal to
SubmodelElementList shall be specified (i.e. idShort is mandatory for all
Referables except for SubmodelElementLists and all Identifiables).

AASd-118 New Because of new attribute supplementalSemanticId for HasSemantics

Constraint AASd-118: If there is a supplemental semantic ID
(HasSemantics/supplementalSemanticId) defined then there shall be also a
main semantic ID (HasSemantics/semanticId).

AASd-119 New New qualifier/kind attribute

Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is
equal to TemplateQualifier and the qualified element inherits from "hasKind"
then the qualified element shall be of kind Template (HasKind/kind =
"Template").

AASd-120 New For new submodel element SubmodelElementList

Constraint AASD-120: idShort of submodel elements within a
SubmodelElementList shall not be specified.

AASd-121 New Constraint AASd-121: For References the type of the first key of Reference/keys
shall be one of GloballyIdentifiables.

AASd-122 New Constraint AASd-122: For global references, i.e. References with
Reference/type = GlobalReference, the type of the first key of Reference/keys
shall be one of GenericGloballyIdentifiables.

AASd-123 New Constraint AASd-123: For model references, i.e. References with
Reference/type = ModelReference, the type of the first key of Reference/keys
shall be one of AasIdentifiables.

AASd-124 New Constraint AASd-124: For global references, i.e. References with
Reference/type = GlobalReference, the last key of Reference/keys shall be
either one of GenericGloballyIdentifiables or one of GenericFragmentKeys.

AASd-125 New Constraint AASd-125: For model references, i.e. References with
Reference/type = ModelReference, with more than one key in Reference/keys
the type of the keys following the first key of Reference/keys shall be one of
FragmentKeys.

228

Nc V3.0RC02
vs. V2.0.1

New, Update,
Removed,
Reformulate
d

Comment

AASd-126 New Constraint AASd-126: For model references, i.e. References with
Reference/type = ModelReference, with more than one key in Reference/keys
the type of the last Key in the reference key chain may be one of
GenericFragmentKeys or no key at all shall have a value out of
GenericFragmentKey.

AASd-127 New Constraint AASd-127: For model references, i.e. References with
Reference/type = ModelReference, with more than one key in Reference/keys a
key with type FragmentReference shall be preceded by a key with type File or
Blob. All other AAS fragments, i.e. type values out of AasSubmodelElements,
do not support fragments.

AA-128 New Constraint AASd-128: For model references, i.e. References with
Reference/type = ModelReference, the Key/value of a Key preceded by a Key
with Key/type=SubmodelElementList is an integer number denoting the position
in the array of the submodel element list.

Metamodel Changes V3.0RC02 vs. V2.0.1 – Data Specification IEC61360

Template 37. Changes w.r.t. Data Specification IEC61360

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

DataSpecification Stereotype <<Template>> added + does not inherit
from Identifiable any longer because Data
Specification are handled in a different way

Some attributes are added to DataSpecification as
new attributes like id, administration and
description (see separate entries).

DataSpecification/category Removed, was inherited before by Identifiable

DataSpecification/displayName Removed, was inherited before by Identifiable

DataSpecification/idShort Removed, was inherited before by Identifiable

x DataSpecificationIEC61360/value Type changed from ValueDataType to string

DataSpecificationIEC61360/valueId Removed, the valueId is identical to the ID of the
concept description

DataSpecificationContent Stereotype <<Template>> added

x DataTypeIEC61360 Some new values were added: BLOB, FILE, HTML,
IRDI. URL renamed to IRI.
+ See separate entries for individual changes.

x DataTypeIEC61360/URL Renamed to IRI

229

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

ValueList/valueReferencePairs Bugfix, was ValueList/valueReferencePairTypes
before

x ValueReferencePair/value Type changed from ValueDataType to string

Template 38. New Elements in Metamodel DataSpecification IEC61360

nc V3.0RC02 vs. V2.0.1 Comment

DataSpecification/administration Was inherited before by Identifiable

DataSpecification/id Was inherited before by Identifiable

DataSpecification/description Was inherited before by Identifiable

DataTypeIEC61360/BLOB New value

DataTypeIEC61360/FILE New value

DataTypeIEC61360/HTML New value

DataTypeIEC61360/IRDI New value

DataTypeIEC61360/IRI Converted Iri to CamelCase and renamed to Iri from
URL

Template 39. New, Changed or Removed Constraints Data Specification IEC61360

nc V3.0RC02 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

AASc-002 New Updated version of AASd-076, renamed to AASc-002 because applicable
to data specification IEC61360

Constraint AASc-002: DataSpecificationIEC61360/preferredName shall be
provided at least in English

(x) AASc-003 New Constraint AASc-003: For a ConceptDescription with category VALUE
using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)
DataSpecificationIEC61360/value shall be set.

(x) AASc-004 New Constraint AASc-004: For a ConceptDescription with category PROPERTY
or VALUE using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType is mandatory and shall be defined.

(x) AASc-005 New Constraint AASc-005: For a ConceptDescription with category
REFERENCE using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType is STRING by default.

230

http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0

nc V3.0RC02 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

(x) AASc-006 New Constraint AASc-006: For a ConceptDescription with category
DOCUMENT using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType shall be one of the following values:
STRING or URL.

(x) AASc-007 New Constraint AASc-007: For a ConceptDescription with category
QUALIFIER_TYPE using data specification template IEC61360
(http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType is mandatory and shall be defined.

(x) AASc-008 New Constraint AASc-008: For a ConceptDescriptions except for a
ConceptDescription of category VALUE using data specification template
IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/definition is mandatory and shall be defined at
least in English.

(x) AASc-009 New Constraint AASc-009: If DataSpecificationIEC61360/dataType one of:
INTEGER_MEASURE, REAL_MEASURE, RATIONAL_MEASURE,
INTEGER_CURRENCY, REAL_CURRENCY, then
DataSpecificationIEC61360/unit or DataSpecificationIEC61360/unitId shall
be defined.

(x) AASc-010 New Constraint AASc-010: If DataSpecificationIEC61360/value is not empty
then DataSpecificationIEC61360/valueList shall be empty and vice versa

Metamodel Changes V3.0RC02 vs. V2.0.1 – Security Part

Changes:

• Removed, because deprecated: policy decision point, policy enforcement point, and policy information points are
not part of information model but of server infrastructure hosting the Asset Administration Shells

• Removed: Certificate Handling not part of information model but of server infrastructure hosting the Asset
Administration Shells

Template 40. Changes w.r.t. Security

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

x AccessControlPolicyPoints/policyAdministrationPoint Type changed from PolicyAdministrationPoint to
AccessControl

x AccessControlPolicyPoints/policyDecisionPoint Removed

x AccessControlPolicyPoints/policyEnforcementPoint Removed

x AccessControlPolicyPoints/policyInformationPoint Removed

231

http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

x AccessPermissionRule No longer inherits from Referable

No longer inherits from Qualifiable

x BlobCertificate Removed

x Certificate Removed

x Formula Now abstract class, only used in security part (no
longer used in Qualifiables)

x Formula/dependsOn Removed attribute

x PolicyAdministrationPoint Removed

x policyDecisionPoint Removed

x policyEnforcementPoint Removed

x policyInformationPoints Removed

x Security/certificate Removed

x Security/requiredCertificateExtension Removed

Template 41. New Elements in Metamodel Security

nc V3.0RC02 vs. V2.0.1 Comment

AccessPermissionRule/constraint Substitute for inherited attributes from Qualifiable

Template 42. New, Changed or Removed Constraints Security

nc V3.0RC02 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

AASd-015 Removed Renamed to AASs-015 (see NEW)

AASs-009 Removed Removed since class PolicyAdministrationPoint was removed

Constraint AASs-009: either there is an external policy administration point
endpoint defined
(PolicyAdministrationPoint/externalPolicyDecisionPoints=true) or the AAS
has its own access control

AASs-010 NEW Reformulation of AASd-010

Constraint AASs-010: the property referenced in Permission/permission
shall have the category "CONSTANT".

232

nc V3.0RC02 vs.
V2.0.1

New, Update,
Removed,
Reformulated

Comment

AASs-011 NEW Reformulation of AASd-011

Constraint AASs-011: the property referenced in Permission/permission
shall be part of the submodel that is referenced within the
"selectablePermissions" attribute of "AccessControl".

AASs-015 NEW Constraint AASs-015: every data element in
SubjectAttributes/subjectAttributes shall be part of the submodel that is
referenced within the "selectableSubjectAttributes" attribute of
"AccessControl".

Changes V3.0RC02 vs. V3.0RC01

Metamodel Changes V3.0RC02 vs. V3.0RC01 w/o Security Part

Major changes:

• CHANGED: Split of SubmodelElementCollection into SubmodelElementList (with orderRelevant) and
SubmodelElementCollection

• CHANGED: Reference type and referredSemanticId added to Reference; Local and Parent attributes removed
from Reference. Logical enumeration concept updated. Some renaming; constraints added for references

• CHANGED: Reference/type now as optional part of string serialization of reference

• CHANGED: idType from identifier removed, ID now string.

• CHANGED: idShort of Referable now optional + Constraints added with respect to id and idShort

• REMOVED: AssetInformation/billOfMaterial removed

• REMOVED: Asset removed

• REMOVED: Views removed, because no longer supported

• NEW: Event and BasicEvent updated and renamed to EventElement and BasicEventElement

• NEW: Checksum introduced for Referables

• REMOVED: security attribute removed from Asset Administration Shell; access control remains part of the
specification

• ENHANCED: DataTypeIEC61360 extended with values for IRI, IRDI, BLOB, FILE + corresponding new constraints
added

• ENHANCED: Removed and split into DataTypeDefXsd and DataTypeDefRdf; some types are excluded and not
supported

• CHANGED: Mapping rules for different serializations + schemata + example in different serializations extracted
and no longer part of this specification

• EDITORIAL: Text updated, no kind column any longer in class tables, instead notation of
ModelReference<{Referable}>. New table for Primitives/Data Types

• EDITORIAL: New clause "Introduction"

• EDITORIAL: New clause "Matching strategies for semantic identifiers"

• NEW: Environment

• NEW: supplemental Semantic IDs

• NEW: Qualifier/kind

233

• CHANGED: Renaming of IdentifierKeyValuePair used in AssetInformation to SpecificAssetId

Bugfixes:

• bugfix annotation AnnotatedRelationship is of type aggr and not ref* (diagram was correct)

• bugfix specification of ValueList and ValueReferencePairType, no data types, normal classes

• bugfix table specifications w.r.t. kind of attribute (from aggr to attr – column kind was removed, see above)

• bugfix data type specification LangStringSet (no diagram and table any longer)

• bugfix enumeration ReferableElements, no ConceptDictionary any longer + new elements like new submodel
elements SubmodelElementList added

• Entity/globalAssetId diagram (table was correct): Type change from reference of Reference to Reference (from
Reference* to Reference)

Template 43. Changes w/o Security

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

AdministrativeInformation Bugfix: Stereotype "DataType" added

AnnotatedRelationship/annotation Type changed from ModelReference<DataElement> to
DataElement

x Asset Removed, asset referenced via globalAssetId only

x AssetAdministrationShell/security Removed

Note: Security is still part of the Asset
Administration Shell, but the Asset Administration
Shell and its elements are referenced from Security

AssetAdministrationShell/view Removed, views no longer supported

x AssetInformation/billOfMaterial Removed

x AssetInformation/defaultThumbnail Type changed from File to Resource

x AssetInformation/specificAssetId Type changed from IdentifierKeyValuePair to
SpecificAssetId

x BasicEvent Renamed to BasicEventElement

x Constraint Abstract class removed. Formula now used in Security
part only

(x) DataTypeDef Split into DataTypeDefXsd and DataTypeDefRdf. Some
types excluded and not supported (see notes in
corresponding clause)

Before: just string allowing all anySimpleTypes of xsd
and langString of rdf

234

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

Entity/globalAssetId Bugfix:

Type change from reference of Reference to Reference
(from Reference* to Reference)

x Event Renamed to EventElement

x Extension/refersTo Type changed from Reference to
ModelReference<Referable>

x File/mimeType Renamed to contentType + Type name changed from
MimeType to ContentType

x Formula Now abstract class now used in Security part only

x Formula/dependsOn Removed since formula language not yet defined

x Identifiable/identification Removed

Substituted by Identifiable/id

(x) IdentifiableElements Renamed to AasIdentifiables

x Identifier Type changed

Before struct class with two attributes: id and idType;
now string data type only

x IdentifierKeyValuePair Renamed to SpecificAssetId and change of attribute
"key" to "name"

IdentifierType Enumeration removed because no idType any longer

x Key/idType removed

(x) KeyElements Renamed to KeyTypes

Note: the elements remain, except for new
SubmodelElementList and renamed submodel
elements Event and BasicEvent to EventElement
and BasicEventElement

KeyType Enumeration removed because no Key/idType any longer

LocalKeyType Enumeration removed because no Key/idType any longer

x MimeType Type name changed to ContentType

Property/valueType Type changed from DataTypeDef to DataTypeDefXsd

x Qualifiable/qualifier Type changed from Constraint to Qualifier

235

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

Qualifier Does not inherit from abstract class "Constraint" any
longer

Qualifier/valueType Type changed from DataTypeDef to DataTypeDefXsd

Range/valueType Type changed from DataTypeDef to DataTypeDefXsd

Referable/idShort Now optional, was mandatory

x ReferableElements Substituted with enumeration AasSubmodelElements
and AasIdentifiables

x ReferableElements/AccessPermissionRule Removed from enumeration, AccessPermissionRule is
no longer referable

Not part of new AasReferableNonIdentifiables

x ReferableElement/BasicEvent Renamed to BasicEventElement

Now part of AasSubmodelElements

(x) ReferablesElements/ConceptDictionary Bugfix: ConceptDictionary removed from enumeration
since ConceptDictionary no longer part of specification

Not part of new KeyTypes

x ReferableElements/Event Renamed to EventElement

Now part of AasSubmodelElements

RelationshipElement/first Type changes from model reference Referable to
Reference (global or model reference)

RelationshipElement/second Type changes from model reference Referable to
Reference (global or model reference)

ValueDataType Before as specified via DataTypeDef, now any xsd
atomic type as specified via DataTypeDefXsd + Prefix xs:
added to every value in list

x ValueList/valueReferencePairType Bugfix: renamed to ValueList/valueReferencePairs

x View removed

Template 44. New Elements in Metamodel w/o Security

nc V3.0RC02 vs. V2.0RC01 New Elements Comment

AasSubmodelElements New enumeration used for References

Before ReferableElements

236

nc V3.0RC02 vs. V2.0RC01 New Elements Comment

AasIdentifiables New enumeration used for References, includes abstract
Identifiable

Before: Identifiables

AasReferableNonIdentifiables New enumeration used for References

AasReferables New enumeration used for References, includes abstract
Referable

BasicEventElement Former name: BasicEvent

BasicEventElement/direction

BasicEventElement/lastUpdate

BasicEventElement/messageBroker

BasicEventElement/messageTopic

BasicEventElement/minInterval

BasicEventElement/maxInterval

BasicEventElement/observed Former name: BasicEvent/observed

BasicEventElement/state

ContentType Former name: MimeType

DataTypeDefRdf Enumeration for types of Rdf + prefix rdf: added to every
value in enumeration

DataTypeDefXsd Enumeration consisting of enumerations
decimalBuildInTypes, durationBuildInTypes,
PrimitiveTypes that correspond to anySimpleTypes of
xsd. + prefix xs: added to every value in enumeration

dateTimeStamp New data type for metamodel as used in EventPayload

decimalBuildInTypes Enumeration for DataTypeDef

Direction New enumeration for BasicEventElement

durationBuildInTypes Enumeration for DataTypeDef

Environment New class for entry point for Asset Administration Shells,
submodels and concept descriptions

EventElement Former name: Event

EventPayload New class for event payload

237

nc V3.0RC02 vs. V2.0RC01 New Elements Comment

EventPayload/observableReference

EventPayload/observableSemanticId

EventPayload/payload

EventPayload/source

EventPayload/sourceSemanticId

EventPayload/subjectId

EventPayload/timestamp

EventPayload/topic

File/contentType Former name: mimeType

FragmentKeys New enumeration used for References

GenericFragmentKeys New enumeration used for References

GenericGloballyIdentifiers New enumeration used for References

GloballyIdentifiables New enumeration used for References

HasSemantics/supplementalSemanticId New attribute

Identifiable/id Substitute for Identifiable/identification

KeyTypes Before: KeyElements

New submodel element SubmodelElementList added,
renamed submodel elements Event and BasicEvent to
EventElement and BasicEventElement

ModelReference New class inheriting from Reference

x Reference/type New mandatory attribute of Reference

Reference/referredSemanticId New optional attribute of Reference

PrimitiveTypes Enumeration for DataTypeDefXsd

Qualifier/kind New attribute for Qualifier

QualifierKind New enumeration for Qualifier/kind

Referable/checksum

SpecificAssetId Before: IdentifierKeyValuePair, was renamed

SpecificAssetId/name Before: IdentifierKeyValuePair/key, was renamed

238

nc V3.0RC02 vs. V2.0RC01 New Elements Comment

SpecificAssetId/value Before: IdentifierKeyValuePair/value

SpecificAssetId/externalSubjectId Before: IdentifierKeyValuePair/externalSubjectId

StateOfEvent New enumeration for BasicEventElement

SubmodelElementElements Enumeration for submodel elements (split of
ReferableElements into SubmodelElementElements and
IdentifiableElements)

SubmodelElementList Before SubmodelElementCollection was used for lists
and structs

SubmodelElementList/orderRelevant Similar to SubmodelElementCollection/ordered

SubmodelElementList/value Similar to SubmodelElementCollection/value but ordered
and with all elements having the same semanticId

SubmodelElementList/semanticIdListElement Attribute for new class SubmodelElementList

SubmodelElementList/typeValueListElement Attribute for new class SubmodelElementList

SubmodelElementList/valueTypeListElement Attribute for new class SubmodelElementList

Template 45. New, Changed or Removed Constraints w/o Security

Nc V3.0RC02
vs.
V3.0RC01

New, Update,
Removed,
Reformulated

Comment

[6] AASd-003 Update idShort is case-sensitive and not case-insensitive

Constraint AASd-003: idShort of Referables shall be matched case-
sensitive.

AASd-005 Reformulated Constraint AASd-005: If AdministrativeInformation/version is not specified
than also AdministrativeInformation/revision shall be unspecified. This
means, a revision requires a version. if there is no version there is no
revision neither. Revision is optional.

AASd-008 Removed Constraint AASd-008: The submodel element value of an operation variable
shall be of kind=Template.

AASd-023 Removed No Asset any longer that can be referenced as alternative to global
reference

Constraint AASd-023: AssetInformation/globalAssetId either is a reference to
an Asset object or a global reference.

239

Nc V3.0RC02
vs.
V3.0RC01

New, Update,
Removed,
Reformulated

Comment

AASd-026 Removed SubmodelElementCollection was split into SubmodelElementList and
SubmodelElementRecord. No attribute allowDuplicates any longer.

Constraint AASd-026: If allowDuplicates==false then it is not allowed that
the collection contains several elements with the same semantics (i.e. the
same semanticId).

x AASd-027 New Constraint AASd-027: idShort of Referables shall have a maximum length of
128 characters.

AASd-050 Update Version information in data specification ID updated to /3/0/RC02.
hasDataSpecification corrected to HasDataSpecification

Constraint AASd-050: If the DataSpecificationContent
DataSpecificationIEC61360 is used for an element then the value of
HasDataSpecification/dataSpecification shall contain the global reference to
the IRI of the corresponding data specification template https://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02.

(x) AASd-050b New Constraint AASd-050b: If the DataSpecificationContent
DataSpecificationPhysicalUnit is used for an element then the value of
HasDataSpecification/dataSpecification shall contain the global reference to
the IRI of the corresponding data specification template https://admin-
shell.io/DataSpecificationTemplates/DataSpecificationPhysicalUnit0/3/0/RC0
2.

AASd-052a Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-052a: If the semanticId of a Property references a
ConceptDescription then the ConceptDescription/category shall be one of
following values: VALUE, PROPERTY.

AASd-052b Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-052b: If the semanticId of a MultiLanguageProperty
references a ConceptDescription then the ConceptDescription/category
shall be one of following values: PROPERTY.

AASd-053 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-053: If the semanticId of a Range submodel element
references a ConceptDescription then the ConceptDescription/category
shall be one of following values: PROPERTY.

AASd-054 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-054: If the semanticId of a ReferenceElement submodel
element references a ConceptDescription then the
ConceptDescription/category shall be one of following values:
REFERENCE.

240

https://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02
https://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02
https://admin-shell.io/DataSpecificationTemplates/DataSpecificationPhysicalUnit0/3/0/RC02
https://admin-shell.io/DataSpecificationTemplates/DataSpecificationPhysicalUnit0/3/0/RC02
https://admin-shell.io/DataSpecificationTemplates/DataSpecificationPhysicalUnit0/3/0/RC02

Nc V3.0RC02
vs.
V3.0RC01

New, Update,
Removed,
Reformulated

Comment

AASd-055 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-055: If the semanticId of a RelationshipElement or an
AnnotatedRelationshipElement submodel element references a
ConceptDescription then the ConceptDescription/category shall be one of
following values: RELATIONSHIP.

AASd-056 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-056: If the semanticId of an Entity submodel element
references a ConceptDescription then the ConceptDescription/category
shall be one of following values: ENTITY. The ConceptDescription describes
the elements assigned to the entity via Entity/statement.

AASd-057 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-057: The semanticId of a File or Blob submodel element
shall only reference a ConceptDescription with the category DOCUMENT.

AASd-058 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-058: The semanticId of a Capability submodel element
shall only reference a ConceptDescription with the category CAPABILITY.

AASd-059 Removed removed, still recommended; would be renamed to AASc if still needed

SubmodelElementCollection was split into SubmodelElementList and
SubmodelElementCollection. AASd-092 and AASd-093 contain it.

Constraint AASd-059: If the semanticId of a SubmodelElementCollection
references a ConceptDescription then the category of the
ConceptDescription shall be COLLECTION or ENTITY.

AASd-060 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-060: If the semanticId of an Operation submodel element
references a ConceptDescription then the category of the
ConceptDescription shall be one of the following values: FUNCTION.

AASd-061 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-061: If the semanticId of an Event submodel element
references a ConceptDescription then the category of the
ConceptDescription shall be one of the following values: EVENT.

AASd-062 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-062: If the semanticId of a Property references a
ConceptDescription then the ConceptDescription/category shall be one of
following values: APPLICATION_CLASS.

241

Nc V3.0RC02
vs.
V3.0RC01

New, Update,
Removed,
Reformulated

Comment

AASd-063 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-063: If the semanticId of a Qualifier references a
ConceptDescription then the ConceptDescription/category shall be one of
following values: QUALIFIER.

AASd-064 Removed Removed because there are not VIEWs any longer

Constraint AASd-064: If the semanticId of a View references a
ConceptDescription then the category of the ConceptDescription shall be
VIEW.

AASd-065 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-065: If the semanticId of a Property or
MultiLanguageProperty references a ConceptDescription with the category
VALUE then the value of the property is identical to
DataSpecificationIEC61360/value and the valueId of the property is identical
to DataSpecificationIEC61360/valueId.

AASd-066 Removed removed, still recommended; would be renamed to AASc if still needed

Update because of renaming of ValueReferencePairType into
ValueReferencePair

Constraint AASd-066: If the semanticId of a Property or
MultiLanguageProperty references a ConceptDescription with the category
PROPERTY and DataSpecificationIEC61360/valueList is defined the value
and valueId of the property is identical to one of the value reference pair
types references in the value list, i.e. ValueReferencePair/value or
ValueReferencePair/valueId, resp.

AASd-067 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-067: If the semanticId of a MultiLanguageProperty
references a ConceptDescription then DataSpecificationIEC61360/dataType
shall be STRING_TRANSLATABLE.

AASd-068 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-068: If the semanticId of a Range submodel element
references a ConceptDescription then DataSpecificationIEC61360/dataType
shall be a numerical one, i.e. REAL_* or RATIONAL_*.

AASd-069 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-069: If the semanticId of a Range references a
ConceptDescription then DataSpecificationIEC61360/levelType shall be
identical to the set \{Min, Max}.

(x) AASd-070 Renamed Now AASc-004.

(x) AASd-071 Renamed Now AASc-005

242

Nc V3.0RC02
vs.
V3.0RC01

New, Update,
Removed,
Reformulated

Comment

(x) AASd-072 Renamed Now AASc-006.

(x) AASd-073 Renamed Now AASc-007

(x) AASd-074 Renamed Now AASc-008

AASd-075 Removed Content now documented as separate constraints

Constraint AASd-075: For all ConceptDescriptions using data specification
template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) values
for the attributes not being marked as mandatory or optional in tables
depending on its category are ignored and handled as undefined.

AASd-076 Removed Substituted by AASc-002. Simplified, no reference to concept description

AASd-080 Removed No Key/type GlobalReference any longer

{aasd080}

AASd-081 Removed No Key/idType any longer

{aasd081}

AASd-090 Update Exception: File and Blob data elements removed. Reformulated.

Constraint AASd-090: For data elements category (inherited by Referable)
shall be one of the following values: CONSTANT, PARAMETER or
VARIABLE. Default: VARIABLE

AASd-092 Removed removed, still recommended; would be renamed to AASc and updated if still
needed

SubmodelElementCollection was split into SubmodelElementList and
SubmodelElementCollection (here: SubmodelElementCollection)

Constraint AASd-092: If the semanticId of a SubmodelElementCollection
with SubmodelElementCollection/allowDuplicates == false references a
ConceptDescription then the ConceptDescription/category shall be ENTITY.

AASd-093 Removed removed, still recommended; would be renamed to AASc and updated if still
needed

SubmodelElementCollection was split into SubmodelElementList and
SubmodelElementStruct (here: SubmodelElementList)

Constraint AASd-093: If the semanticId of a SubmodelElementCollection
with SubmodelElementCollection/allowDuplicates == true references a
ConceptDescription then the ConceptDescription/category shall be
COLLECTION.

AASd-107 New Constraint AASd-107: If a first level child element in a SubmodelElementList
has a semanticId it shall be identical to
SubmodelElementList/semanticIdListElement.

243

http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0

Nc V3.0RC02
vs.
V3.0RC01

New, Update,
Removed,
Reformulated

Comment

AASd-108 New Constraint AASd-108: All first level child elements in a SubmodelElementList
shall have the same submodel element type as specified in
SubmodelElementList/typeValueListElement.

AASd-109 New Constraint AASd-109: If SubmodelElementList/typeValueListElement equal
to Property or Range SubmodelElementList/valueTypeListElement shall be
set and all first level child elements in the SubmodelElementList shall have
the value type as specified in SubmodelElementList/valueTypeListElement.

AASd-114 New Constraint AASd-114: If two first level child elements in a
SubmodelElementList have a semanticId then they shall be identical.

AASd-115 New Constraint AASd-115: If a first level child element in a SubmodelElementList
does not specify a semanticId then the value is assumed to be identical to
SubmodelElementList/semanticIdListElement.

AASd-116 New Constraint AASd-116: "globalAssetId" (case-insensitive) is a reserved key. If
used as value for SpecificAssetId/name IdentifierKeyValuePair/value shall be
identical to AssetInformation/globalAssetId.

AASd-117 New Needed because Referable/idShort now optional

Constraint AASd-117: idShort of non-identifiable Referables not equal to
SubmodelElementList shall be specified (i.e. idShort is mandatory for all
Referables except for SubmodelElementLists and all Identifiables).

AASd-118 New Constraint AASd-118: If there is a supplemental semantic ID
(HasSemantics/supplementalSemanticId) defined then there shall be also a
main semantic ID (HasSemantics/semanticId).

AASd-119 New New Qualifier/kind attribute

Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is
equal to TemplateQualifier and the qualified element inherits from "hasKind"
then the qualified element shall be of kind Template (HasKind/kind =
"Template").

AASd-120 New For new submodel element SubmodelElementList

Constraint AASD-120: idShort of submodel elements within a
SubmodelElementList shall not be specified.

AASd-121 New Constraint AASd-121: For References the type of the first key of
Reference/keys shall be one of GloballyIdentifiables.

AASd-122 New Constraint AASd-122: For global references, i.e. References with
Reference/type = GlobalReference, the type of the first key of
Reference/keys shall be one of GenericGloballyIdentifiables.

AASd-123 New Constraint AASd-123: For model references, i.e. References with
Reference/type = ModelReference, the type of the first key of
Reference/keys shall be one of AasIdentifiables.

244

Nc V3.0RC02
vs.
V3.0RC01

New, Update,
Removed,
Reformulated

Comment

AASd-124 New Constraint AASd-124: For global references, i.e. References with
Reference/type = GlobalReference, the last key of Reference/keys shall be
either one of GenericGloballyIdentifiables or one of GenericFragmentKeys.

AASd-125 New Constraint AASd-125: For model references, i.e. References with
Reference/type = ModelReference, with more than one key in
Reference/keys the type of the keys following the first key of Reference/keys
shall be one of FragmentKeys.

AASd-126 New Constraint AASd-126: For model references, i.e. References with
Reference/type = ModelReference, with more than one key in
Reference/keys the type of the last Key in the reference key chain may be
one of GenericFragmentKeys or no key at all shall have a value out of
GenericFragmentKey.

AASd-127 New Constraint AASd-127: For model references, i.e. References with
Reference/type = ModelReference, with more than one key in
Reference/keys a key with type FragmentReference shall be preceded by a
key with type File or Blob. All other AAS fragments, i.e. type values out of
AasSubmodelElements, do not support fragments.

AAS-128 New Constraint AASd-128: For model references, i.e. References with
Reference/type = ModelReference, the Key/value of a Key preceded by a
Key with Key/type=SubmodelElementList is an integer number denoting the
position in the array of the submodel element list.

Metamodel Changes V3.0RC02 vs. V3.0RC01 – Data Specification IEC61360

Template 46. Changes w.r.t. Data Specification IEC61360

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

DataSpecification Stereotype <<Template>> added + does not inherit
from Identifiable any longer because Data
Specification are handled differently

Some attributes are added to DataSpecification as
new attributes like id, administration and
description

DataSpecification/category Removed, was inherited before by Identifiable

DataSpecification/displayName Removed, was inherited before by Identifiable

DataSpecification/idShort Removed, was inherited before by Identifiable

DataSpecificationIEC61360/unitId Type changes from Reference to GlobalReference

x DataSpecificationIEC61360/value Type changed from ValueDataType to string

245

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

DataSpecificationIEC61360/valueId Removed, the valueId is identical to the ID of the
concept description

DataSpecificationContent Stereotype <<Template>> added

x DataTypeIEC61360 Some new values were added: BLOB, FILE,
HTML, IRDI; URL renamed to IRI

See separate entries for individual changes

x DataTypeIEC61360/URL Renamed to IRI

ValueList/valueReferencePairs Bugfix, was ValueList/valueReferencePairTypes
before

x ValueReferencePair/value Type changed from ValueDataType to string

Template 47. New Elements in Metamodel DataSpecification IEC61360

nc V3.0RC02 Comment

x ValueReferencePair/valueId Type changed from Reference to GlobalReference

DataSpecification/administration Was inherited before by Identifiable

DataSpecification/id Was inherited before by Identifiable

DataSpecification/description Was inherited before by Identifiable

DataTypeIEC61360/BLOB New value

DataTypeIEC61360/FILE New value

DataTypeIEC61360/HTML New value

DataTypeIEC61360/IRDI New value

DataTypeIEC61360/IRI Converted Iri to CamelCase and renamed to Iri from
URL

Template 48. New, Changed or Removed Constraints Data Specification IEC61360

nc V3.0RC02 New, Update,
Removed,
Reformulated

Comment

AASc-002 New Updated version of AASd-076, renamed to AASC-002 because applicable
to data specification IEC61360

Constraint AASc-002: Data¬Specification¬IEC61360-/preferredName shall
be provided at least in English

246

nc V3.0RC02 New, Update,
Removed,
Reformulated

Comment

(x) AASc-003 New Constraint AASc-003: For a ConceptDescription with category VALUE
using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)
DataSpecificationIEC61360/value shall be set.

(x) AASc-004 New Constraint AASc-004: For a ConceptDescription with category PROPERTY
or VALUE using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType is mandatory and shall be defined.

(x) AASc-005 New Constraint AASc-005: For a ConceptDescription with category
REFERENCE using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType is STRING by default.

(x) AASc-006 New Constraint AASc-006: For a ConceptDescription with category
DOCUMENT using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType shall be one of the following values:
STRING or URL.

(x) AASc-007 New Constraint AASc-007: For a ConceptDescription with category
QUALIFIER_TYPE using data specification template IEC61360
(http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType is mandatory and shall be defined.

(x) AASc-008 New Constraint AASc-008: For a ConceptDescriptions except for a
ConceptDescription of category VALUE using data specification template
IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/definition is mandatory and shall be defined at
least in English.

(x) AASc-009 New Constraint AASc-009: If DataSpecificationIEC61360/dataType one of:
INTEGER_MEASURE, REAL_MEASURE, RATIONAL_MEASURE,
INTEGER_CURRENCY, REAL_CURRENCY, then
DataSpecificationIEC61360/unit or DataSpecificationIEC61360/unitId shall
be defined.

(x) AASc-010 New Constraint AASc-010: If DataSpecificationIEC61360/value is not empty
then DataSpecificationIEC61360/valueList shall be empty and vice versa

Metamodel Changes V3.0RC02 vs. V3.0RC01 – Security Part

Changes:

• Removed, because deprecated: policy decision point, policy enforcement point, and policy information points are
not part of information model but of server infrastructure hosting the Asset Administration Shells

• Removed: Certificate Handling not part of information model but of server infrastructure hosting the Asset
Administration Shells

247

http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0

Template 49. Changes w.r.t. Security

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

x AccessControlPolicyPoints/policyAdministrationPoint Type changed from PolicyAdministrationPoint to
AccessControl

x AccessControlPolicyPoints/policyDecisionPoint Removed

x AccessControlPolicyPoints/policyEnforcementPoint Removed

x AccessControlPolicyPoints/policyInformationPoint Removed

x AccessPermissionRule No longer inherits from referable

No longer inherits from qualifiable

x BlobCertificate Removed

x Certificate Removed

x Formula Now abstract class, only used in security part (no
longer used in Qualifiables)

x Formula/dependsOn Removed attribute

x PolicyAdministrationPoint Removed

x policyDecisionPoint Removed

x policyEnforcementPoint Removed

x policyInformationPoints Removed

x Security/certificate Removed

x Security/requiredCertificateExtension Removed

Template 50. New Elements in Metamodel Security

nc V3.0RC02 vs. V3.0RC01 Comment

AccessPermissionRule/constraint Substitute for inherited attributes from Qualifiable

Template 51. New, Changed or Removed Constraints Security

nc V3.0RC02 vs.
V3.0RC01

New, Update,
Removed,
Reformulated

Comment

AASs-009 Removed Removed since class PolicyAdministrationPoint was removed

Constraint AASs-009: Either there is an external policy administration point
endpoint defined
(PolicyAdministrationPoint/externalPolicyDecisionPoints=true) or the AAS
has its own access control

248

nc V3.0RC02 vs.
V3.0RC01

New, Update,
Removed,
Reformulated

Comment

AASs-015 Updated Constraint AASs-015: Every data element in
SubjectAttributes/subjectAttributes shall be part of the submodel that is
referenced within the "selectableSubjectAttributes" attribute of
"AccessControl".

Changes V3.0RC01 vs. V2.0.1

Metamodel Changes V3.0RC01 w/o Security Part

Major changes:

• idShort of Submodels etc. no longer need to be unique in the context of an Asset Administration Shell

• Constraints implicitly contained in text were formalized and numbered

• Revised concept on handling of Asset and assetIdentificationModel (assetInformation)

• ConceptDictionaries not supported any longer

• semanticId no longer mandatory for SubmodelElement

• More than one bill of material for assetInformation in Asset Administration Shell

• Local attribute in References removed

• Parent attribute in Referables removed

• Abstract class HasExtension introduced

• AASX file exchange format:no splitting of an Asset Administration Shell allowed any longer (i.e. relationship type
aas-spec-split removed)

Template 52. Changes w.r.t. V2.0 w/o Security

nc V3.0RC01 Change w.r.t. V2.0.1 Comment

anySimpleTypeDef Type removed, was not used in any class definition any
longer, was mentioned in text only

x AssetAdministrationShell/asset Removed, substituted by
AssetAdministrationShell/assetInformation (no reference
any longer, instead now aggregation)

x Asset/assetKind Attribute "assetKind" moved to
AssetAdministrationShell/AssetInformation

x Asset/assetIdentificationModel Attribute "assetIdentificationModel" removed, substituted
by AssetInformation /IdentifierKeyValuePairs

x Asset/billOfMaterial Attribute "billOfMaterial" moved to
AssetAdministrationShell/AssetInformation

x AssetAdministrationShell/conceptDictionaries Removed

ConceptDescription/isCaseOf Text changed, no global reference requested, just
reference

249

nc V3.0RC01 Change w.r.t. V2.0.1 Comment

x ConceptDictionary Removed

x Entity/asset Removed, substituted by Entity/globalAssetId and
Entity/specificAssetId

x Key/local Local attribute removed

x Referable/parent Parent attribute removed

Template 53. New Elements in Metamodel V3.0RC01 w/o Security

nc V3.0RC01 vs. V2.0.1 Comment

x AssetAdministrationShell/assetInformation Substitute for AssetAdministrationShell/asset (no
reference any longer, instead aggregation)

AssetInformation with attributes/functionality from former class Asset
because not specific to Asset but AAS

AssetInformation/thumbnail Optional Attribute of new class AssetInformation
that was not available in Asset class before

x Entity/globalAssetId Substitute for Entity/asset (together with
Entity/specificAssetId)

x Entity/specificAssetId Substitute for Entity/asset (together with
Entity/globalAssetId)

Extension New class, part of new abstract class
HasExtensions

HasExtensions New abstract class, inherited by Referable

IdentifierKeyValuePair New class for AssetInformation/specificAssetId

Referable/displayName New optional attribute for all referables

Template 54. New, Changed or Removed Constraints w/o Security

nc V3.0RC01 New, Update,
Removed,
Reformulated

Comment

AASd-001 Removed Constraint AASd-001: In case of a referable element not being an
identifiable element this id is mandatory and used for referring to the
element in its name space.

For namespace part see AASd-022

x AASd-002 Update reformulated, formula added

idShort of Referables shall only feature letters, digits, underscore ("");
starting mandatory with a letter. I.e. [a-zA-Z][a-zA-Z0-9]+

250

nc V3.0RC01 New, Update,
Removed,
Reformulated

Comment

AASd-010 Reformulated Constraint AASd-010: The property has the category "CONSTANT".

Reformulated to

Constraint AASd-010: The property referenced in Permission/permission
shall have the category "CONSTANT".

AASd-011 Reformulated Constraint AASd-011: The property referenced in Permission/permission
shall be part of the submodel that is referenced within the
"selectablePermissions" attribute of "AccessControl".

AASd-012 Reformulated Constraint AASd-012: If both the MultiLanguageProperty/value and the
MultiLanguageProperty/valueId are present then for each string in a specific
language the meaning must be the same as specified in
MultiLanguageProperty/valueId

AASd-014 Reformulated Entity was changed

Constraint AASd-014: Either the attribute globalAssetId or specificAssetId of
an Entity must be set if Entity/entityType is set to "SelfManagedEntity". They
are not existing otherwise.

(x) AASd-020 New Constraint AASd-020: The value of Property/value shall be consistent to the
data type as defined in Property/valueType.

(x) AASd-021 New Constraint AASd-021: Every qualifiable can only have one qualifier with the
same Qualifier/type.

(x) AASd-022 New Part from AASd-001 after split

Constraint AASd-022: idShort of non-identifiable referables shall be unique
in its namespace.

(x) AASd-026 New Constraint AASd-026: If allowDuplicates==false then it is not allowed that
the collection contains several elements with the same semantics (i.e. the
same semanticId).

(x) AASd-050 New Constraint AASd-050: If the DataSpecificationContent
DataSpecificationIEC61360 is used for an element then the value of
hasDataSpecification/dataSpecification shall contain the global reference to
the IRI of the corresponding data specification template http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0.

(x) AASd-051 New Constraint AASd-051: A ConceptDescription shall have one of the following
categories: VALUE, PROPERTY, REFERENCE, DOCUMENT, CAPABILITY,
RELATIONSHIP, COLLECTION, FUNCTION, EVENT, ENTITY,
APPLICATION_CLASS, QUALIFIER, VIEW. Default: PROPERTY.

(x) AASd-052a New Constraint AASd-052a: If the semanticId of a Property references a
ConceptDescription then the ConceptDescription/category shall be one of
following values: VALUE, PROPERTY.

251

http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0

nc V3.0RC01 New, Update,
Removed,
Reformulated

Comment

(x) AASd-052b New Constraint AASd-052b: If the semanticId of a MultiLanguageProperty
references a ConceptDescription then the ConceptDescription/category
shall be one of following values: PROPERTY.

(x) AASd-053 New Constraint AASd-053: If the semanticId of a Range submodel element
references a ConceptDescription then the ConceptDescription/category
shall be one of following values: PROPERTY.

(x) AASd-054 New Constraint AASd-054: If the semanticId of a ReferenceElement submodel
element references a ConceptDescription then the
ConceptDescription/category shall be one of following values:
REFERENCE.

(x) AASd-055 New Constraint AASd-055: If the semanticId of a RelationshipElement or an
AnnotatedRelationshipElement submodel element references a
ConceptDescription then the ConceptDescription/category shall be one of
following values: RELATIONSHIP.

(x) AASd-056 New Constraint AASd-056: If the semanticId of an Entity submodel element
references a ConceptDescription then the ConceptDescription/category
shall be one of following values: ENTITY. The ConceptDescription describes
the elements assigned to the entity via Entity/statement.

(x) AASd-057 New Constraint AASd-057: The semanticId of a File or Blob submodel element
shall only reference a ConceptDescription with the category DOCUMENT.

(x) AASd-058 New Constraint AASd-058: The semanticId of a Capability submodel element
shall only reference a ConceptDescription with the category CAPABILITY.

(x) AASd-059 New Constraint AASd-059: The semanticId of a SubmodelElementCollection
submodel element shall only reference a ConceptDescription with the
category COLLECTION or ENTITY.

(x) AASd-060 New Constraint AASd-060: If the semanticId of an Operation submodel element
references a ConceptDescription then the category of the
ConceptDescription shall be one of the following values: FUNCTION.

(x) AASd-061 New Constraint AASd-061: If the semanticId of an Event submodel element
references a ConceptDescription then the category of the
ConceptDescription shall be one of the following values: EVENT.

(x) AASd-062 New Constraint AASd-062: If the semanticId of a Property references a
ConceptDescription then the ConceptDescription/category shall be one of
following values: APPLICATION_CLASS.

(x) AASd-063 New Constraint AASd-063: If the semanticId of a Qualifier references a
ConceptDescription then the ConceptDescription/category shall be one of
following values: QUALIFIER.

(x) AASd-064 New Constraint AASd-064: If the semanticId of a View references a
ConceptDescription then the category of the ConceptDescription shall be
VIEW.

252

nc V3.0RC01 New, Update,
Removed,
Reformulated

Comment

(x) AASd-065 New Constraint AASd-065: If the semanticId of a Property or
MultiLanguageProperty references a ConceptDescription with the category
VALUE then the value of the property is identical to
DataSpecificationIEC61360/value and the valueId of the property is identical
to DataSpecificationIEC61360/valueId.

(x) AASd-066 New Constraint AASd-066: If the semanticId of a Property or
MultiLanguageProperty references a ConceptDescription with the category
PROPERTY and DataSpecificationIEC61360/valueList is defined the value
and valueId of the property is identical to one of the value reference pair
types references in the value list, i.e. ValueReferencePair/value or
ValueReferencePair/valueId, resp.

(x) AASd-067 New Constraint AASd-067: If the semanticId of a MultiLanguageProperty
references a ConceptDescription then DataSpecificationIEC61360/dataType
shall be STRING_TRANSLATABLE.

(x) AASd-068 New Constraint AASd-068: If the semanticId of a Range submodel element
references a ConceptDescription then DataSpecificationIEC61360/dataType
shall be a numerical one, i.e. REAL_* or RATIONAL_*.

(x) AASd-069 New Constraint AASd-069: If the semanticId of a Range references a
ConceptDescription then DataSpecificationIEC61360/levelType shall be
identical to the set \{Min, Max}.

(x) AASd-070 New Constraint AASd-070: For a ConceptDescription with category PROPERTY
or VALUE using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType is mandatory and shall be defined.

(x) AASd-071 New Constraint AASd-071: For a ConceptDescription with category
REFERENCE using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType is STRING by default.

(x) AASd-072 New Constraint AASd-072: For a ConceptDescription with category DOCUMENT
using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType shall be one of the following values:
STRING or URL.

(x) AASd-073 New Constraint AASd-073: For a ConceptDescription with category QUALIFIER
using data specification template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/dataType is mandatory and shall be defined.

(x) AASd-074 New Constraint AASd-074: For all ConceptDescriptions except for
ConceptDescriptions of category VALUE using data specification template
IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) -
DataSpecificationIEC61360/definition is mandatory and shall be defined at
least in English.

253

http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0

nc V3.0RC01 New, Update,
Removed,
Reformulated

Comment

(x) AASd-075 New Constraint AASd-075: For all ConceptDescriptions using data specification
template IEC61360 (http://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0) values
for the attributes not being marked as mandatory or optional in tables Table
6, Table 7, Table 8 and Table 9.depending on its category are ignored and
handled as undefined.

AASd-077 New Constraint AASd-077: The name of an extension within HasExtensions
needs to be unique.

(x) AASd-080 New Constraint AASd-080: In case Key/type == GlobalReference idType shall not
be any LocalKeyType (IdShort, FragmentId).

AASd-081 New Constraint AASd-081: In case Key/type==AssetAdministrationShell
Key/idType shall not be any LocalKeyType (IdShort, FragmentId).

(x) AASd-092 New Constraint AASd-092: If the semanticId of a SubmodelElementCollection
with SubmodelElementCollection/allowDuplicates == false references a
ConceptDescription then the ConceptDescription/category shall be ENTITY.

(x) AASd-093 New Constraint AASd-093: If the semanticId of a SubmodelElementCollection
with SubmodelElementCollection/allowDuplicates == true references a
ConceptDescription then the ConceptDescription/category shall be
COLLECTION.

AASd-100 New Constraint AASd-100: An attribute with data type "string" is not allowed to be
empty.

Metamodel Changes V3.0RC01 – Security Part

Major changes:

• Constraints for security part renamed from pattern AASd- to AASs-.

• Only bugfixes

Template 55. New, Changed or Removed Constraints Security

nc V3.0RC01 New, Update, Removed,
Reformulated

Comment

AASd-010 Removed Renamed to AASs-010 (see NEW)

AASs-010 NEW Reformulation of AASd-010

Constraint AASs-010: The property referenced in
Permission/permission shall have the category
"CONSTANT".

AASd-011 Removed Renamed to AASs-011 (see NEW)

254

http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0
http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0

nc V3.0RC01 New, Update, Removed,
Reformulated

Comment

AASs-011 NEW Reformulation of AASd-011

Constraint AASs-011: The property referenced in
Permission/permission shall be part of the submodel that is
referenced within the "selectablePermissions" attribute of
"AccessControl".

AASd-015 Removed Renamed to AASs-015 (see NEW)

AASs-015 NEW Constraint AASd-015: The data element
SubjectAttributes/subjectAttribute shall be part of the
submodel that is referenced within the
"selectableSubjectAttributes" attribute of "AccessControl".

Changes V2.0.1 vs. V2.0

Metamodel Changes V2.0.1 w/o Security Part

Major changes:

• Only bugfixes

Template 56. Changes w.r.t. V2.0.1 w/o Security

nc V2.0.1 Change w.r.t. V2.0 Comment

DataTypeIEC61360/INTEGER_COUNT Bugfix, was missing

DataTypeIEC61360/INTEGER_MEASURE Bugfix, was missing

DataTypeIEC61360/INTEGER_CURRENCY Bugfix, was missing

hasDataSpecification Bugfix, is abstract class – was mixed up with
DataSpecification class that is not abstract

DataSpecification Bugfix, is not abstract

AnnotatedRelationshipElement/annotation Bugfix, Annotation ist not a reference to Data
Elements

Template 57. New, Changed or Removed Constraints w/o Security

nc V2.0.1 New, Update, Removed Comment

AASd-001 update idShort now mandatory

Constraint AASd-001: an identifiable element this id is mandatory
and used for referring to the element in its name space.

Constraint AASd-001: In case of a referable element not being an
identifiable element this ID is used for referring to the element in its
name space.

255

nc V2.0.1 New, Update, Removed Comment

AASd-013 Removed Constraint AASd-013: In case of a range with kind=Instance either
the min or the max value or both need to be defined.

Changes V2.0 vs. V1.0

Metamodel Changes V2.0 w/o Security Part

Major changes:

• Composite I4.0 Components supported via new Entity submodel element and billOfMaterial

• Event submodel element introduced

• Capability submodel element introduced

• Annotatable relationship submodel element introduced

• MultiLanguageProperty submodel element introduced

• Range submodel element introduced

• Data Specification Template IEC61360 extended for Values, ValueLists and Ranges

• Referencing of fragments within a file etc. now also supported

Template 58. Changes w.r.t. V1.0 w/o Security

nc V2.0 Change w.r.t. V1.0 Comment

(x)
[7]

anySimpleTypeDef Type now starts with capital letter: AnySimpleTypeDef

Type changed from string to values representing xsd-
type anySimpleType

Asset Does not inherit from HasKind any longer (but
attribute kind remains)

Asset/kind Now of type "AssetKind" instead of "Kind". Instead of
value Type and Instance now value Template and
Instance

AssetAdministrationShell/security Now optional to support passive AAS of type 1

Code Data type removed, no longer used

x DataSpecificationIEC61360/shortName Type changed from string to LangStringSet

Cardinality changed from mandatory to optional

x DataSpecificationIEC61360/sourceOfDefinition Type changed from langString to string

(x)
[8]

DataSpecificationIEC61360/dataType Type changed from string to Enumeration

Cardinality changed from mandatory to optional

x DataSpecificationIEC61360/code Attribute code removed

DataSpecificationIEC61360/definition Cardinality changed from mandatory to optional

256

nc V2.0 Change w.r.t. V1.0 Comment

HasDataSpecification Was abstract before

HasDataSpecification/hasDataSpecification Renamed to HasDataSpecification/dataSpecification

x HasKind/kind Now of type "ModellingKind" instead of "Kind". Values
changed: Type now Template; Instance remains

x File/value File name not without but with extension

x Identifiable/description Type changed from langString to LangStringSet

x IdentifierType/URI URI renamed to IRI

Kind Type Kind removed and substituted by types
AssetKind and ModellingKind

x OperationVariable No longer inherits from SubmodelElement

Property/value Type changed from anySimpleTypeDef to
ValueDataType

x Qualifier/qualifierType Renamed to Qualifier/type

x Qualifier/qualifierValue Renamed to Qualifier/value

Type changed from AnySimpleTypeDef to
ValueDataType

x Qualifier/qualifierValueId Renamed to Qualifier/valueId

x Referable/idShort Now mandatory, was optional (but with constraints for
defined elements)

x Reference/key Cardinality changed from 0..* to 1..*

Template 59. New Elements in Metamodel V1.0 w/o Security

V2.0 Comment

AnnotatedRelationshipElement New submodel element, inheriting from RelationshipElement

Asset/billOfMaterial New attribute

AssetKind New enumeration type

BasicEvent New submodel element, inherits from Event

Capability New submodel element

DataSpecificationIEC61360/valueList For value lists (string)

DataSpecificationIEC61360/value For coded and explicit values

257

V2.0 Comment

DataSpecificationIEC61360/valueId For coded values

DataSpecificationIEC61360/levelType For Ranges

DataSpecificationPhysicalUnit New data specification template

DataTypeIEC61360 New enumeration type

Entity New submodel Element

EntityType New enumeration type

IdentifierType Is a subset of KeyType Enumeration

KeyElements/FragmentReference New value FragmentReference as part of KeyElements
Enumeration

LocalKeyType Is a subset of KeyType Enumeration

LocalKeyType/FragmentId New value for KeyType Enumeration (via subset LocalKeyType)

LangStringSet New type, used for example in MultiLanguageProperty

LevelType New enumeration type

ModellingKind New enumeration type

MultiLanguageProperty New submodel element

Qualifier/valueType New attribute to be consistent with valueType of Property etc.

Range New submodel element

ReferableElements/BasicEvent New enumeration value

ReferableElements/Capability New enumeration value

ReferableElements/Event New enumeration value

ReferableElements/MultiLanguageProperty New enumeration value

ReferableElements/Range New enumeration value

ValueDataType New type, used for example for Property value

ValueList New class

ValueReferencePairType New class

Template 60. New, Changed or Removed Constraints w/o Security

258

nc V2.0 New, Update, Removed Comment

AASd-007 update Reformulated

Constraint AASd-007: if both, the value and the valueId are
present then the value needs to be identical to the value of the
referenced coded value in valueId.

AASd-008 update Reformulated

Constraint AASd-008: The submodel element value of an
operation variable shall be of kind=Template.

AASd-025 removed Redundant to AASd-015

Constraint AASd-025: The data element shall be part of the
submodel that is referenced within the
"selectableSubjectAttributes" attribute of "AccessControl".

Metamodel Changes V2.0 – Security Part

Template 61. Changes Metamodel w.r.t. V1.0 Security

nc V2.0 Change w.r.t. V1.0 Comment

x AccessControl/selectableEnvironmentAttribute
s

Type changed from Submodel to Submodel*

AccessPermissionRule/permissionsPerObject Cardinality now consistent for figure and table: 0..*

x AccessPermissionRule/targetSubjectAttributes Cardinality changed from 1..* to 1

Certificate Was abstract, now not abstract and contains attributes (see
in table New)

x PermissionKind/allow Now PermissionKind/Allow starts with capital letter for
enumeration values

x PermissionKind/deny Now PermissionKind/Deny starts with capital letter for
enumeration values

x PermissionKind/not applicable Now PermissionKind/NotApplicable starts with capital letter
for enumeration values

x PermissionKind/Undefined Now PermissionKind/Undefined starts with capital letter for
enumeration values

PermissionsPerObject Name now consistent in figure and table (in table
PermissionPerObject, needs to be PermissionsPerObject)

x PolicyAdministrationPoint/externalAccessContr
ol

Type changed from Endpoint to Boolean, cardinality 1

259

nc V2.0 Change w.r.t. V1.0 Comment

x PolicyInformationPoints/externalInformationPoi
nt

Type changed from Endpoint to Boolean, cardinality 1

externalInformationPoint renamed to
externalInformationPoints

x Security/trustAnchor Renamed to Security/certificate

Template 62. New Elements in Metamodel w.r.t. Security

V2.0 Comment

BlobCertificate New class inheriting from Certificate

Certificate Abstract class: was foreseen in V1.0 but not yet
modelled

Security/requiredCertificateExtension New attribute

PolicyEnforcementPoint Was foreseen in V1.0 but not yet modelled

PolicyEnforcementPoint/externalPolicyEnforcementPoint

PolicyDecisionPoint Was foreseen in V1.0 but not yet modelled

PolicyDecisionPoint/externalPolicyDecisionPoint

[3] Derived Schemata used Base64Binary and not hexBinary, therefore this change is considered to be backward compatible for most applications.

[4] Since HasKind/kind had the default Instance, this change has no impact if the attribute was omitted for submodel instances.

[5] Every model valid for V3.0RC02 is still valid in V3.0RC01, however there might be implementations that need to be changed if they assumed that
the user can type case-insensitive names and get all elements that match the name in a case-insensitive way.

[6] Every model valid for V3.0RC02 is still valid in V3.0RC01, however there might be implementations that need to be changed if they assumed that
the user can type case-insensitive names and get all elements that match the name in a case-insensitive way.

[7] There was an implicit constraint restricting the values to the values in the enumeration. This is now formalized.

[8] There was an implicit constraint that only IEC61360 data types are allowed to be used. This is now formalized.

260

Bibliography

[1] "Recommendations for implementing the strategic initiative INDUSTRIE 4.0", acatech, April 2013. Accessed: 2025-
03-24. [Online]. Available: https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-
industrie-4-0-final-report-of-the-industrie-4-0-working-group/

[2] "Implementation Strategy Industrie 4.0: Report on the results of the Industrie 4.0 Platform"; BITKOM e.V. / VDMA
e.V., /ZVEI e.V., April 2015. Accessed: 2025-03-24. [Online]. Available:
https://www.bitkom.org/Bitkom/Publikationen/Implementation-Strategy-Industrie-40-Report-on-the-results-of-the-
Industrie-40-Platform.html

[3] DIN SPEC 91345:2016-04 "Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) / Reference Architecture Model
Industrie 4.0 (RAMI4.0) / Modèle de reference de l’architecture de l’industrie 4.0 (RAMI4.0)", ICS 03.100.01;
25.040.01; 35.240.50, April 2016. Accessed: 2025-03-24. [Online]. Available: https://www.beuth.de/en/technical-
rule/din-spec-91345-en/250940128

[4] "Structure of the Administration Shell, continuation of the development of the reference model for the Industrie 4.0
component", Plattform Industrie 4.0, Working Paper, April 2016. [Online]. Available: https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html

[5] "Which criteria do Industrie 4.0 products need to fulfil? Guideline 2020", Federal Ministry for Economic Affairs and
Energy (BMWi), July 2020. Accessed: 2025-03-24. [Online]. Available: https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/criteria-industrie-40-products_2020.html

[6] (German) "Beispiele zur Verwaltungsschale der Industrie 4.0-Komponente – Basisteil"; ZVEI e.V., Whitepaper,
November 2016. Accessed: 2025-03-24. [Online]. Available: https://www.zvei.org/presse-
medien/publikationen/beispiele-zur-verwaltungsschale-der-industrie-40-komponente-basisteil/

[7] "Aspects of the research roadmap in application scenarios", Plattform Industrie 4.0, working paper, April 2016.
Accessed: 2025-03-24. [Online]. Available: http://www.plattform-
i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html

[8] (German) "Fortschreibung der Anwendungsszenarien der Plattform Industrie 4.0"; Plattform Industrie 4.0,
Ergebnispapier, October 2016. Accessed: 2025-03-24. [Online]. Available: https://www.plattform-
i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html

[9] "Security in RAMI4.0", Plattform Industrie 4.0, Berlin, technical overview, April 2016. Accessed: 2025-03-24.
[Online]. Available: http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/security-rami40-en.html

[10] "Die Deutsche Normungs-Roadmap Industrie 4.0 / The German standardization roadmap Industrie 4.0", DKE
Deutsche Kommission Elektrotechnik, Elektronik Informationstechnik im DIN und VDE, Version 2.0, 2015. Accessed:
2025-03-24. [Online]. Available: https://www.din.de/de/forschung-und-innovation/themen/industrie4-0/roadmap-
industrie40-62178

[11] "Weiterentwicklung des Interaktionsmodells für Industrie 4.0-Komponenten", Plattform Industrie 4.0, discussion
paper, November 2016. Accessed: 2025-03-24. [Online]. Available: https://www.plattform-
i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-gipfel.html

[12] "Definition of terms relating to Industrie 4.0", VDI/VDE-GMA Fachausschuss 7.21. Accessed: 2025-03-24.
[Online]. Available: https://www.eks-intec.de/i40-begriffe/FA7.21%20Begriffe%20-%20Industrie%204.0

[13] "Relationships between I4.0 Components – Composite Components and Smart Production", Plattform Industrie
4.0, Berlin, working paper, June 2017. Accessed: 2025-03-24. [Online]. Available: https://www.plattform-
i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-relationship.html

[14] "Industrie 4.0 Plug-and-Produce for Adaptable Factories"; Plattform Industrie 4.0, Berlin, working paper, June
2017. Accessed: 2025-03-24. [Online]. Available: https://www.plattform-
i40.de/IP/Redaktion/DE/Downloads/Publikation/Industrie-40-20Plug-and-Produce.html

[15] "Security der Verwaltungsschale / Security of the Administration Shell", Plattform Industrie 4.0, Berlin, working

261

https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/
https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/
https://www.bitkom.org/Bitkom/Publikationen/Implementation-Strategy-Industrie-40-Report-on-the-results-of-the-Industrie-40-Platform.html
https://www.bitkom.org/Bitkom/Publikationen/Implementation-Strategy-Industrie-40-Report-on-the-results-of-the-Industrie-40-Platform.html
https://www.beuth.de/en/technical-rule/din-spec-91345-en/250940128
https://www.beuth.de/en/technical-rule/din-spec-91345-en/250940128
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/criteria-industrie-40-products_2020.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/criteria-industrie-40-products_2020.html
https://www.zvei.org/presse-medien/publikationen/beispiele-zur-verwaltungsschale-der-industrie-40-komponente-basisteil/
https://www.zvei.org/presse-medien/publikationen/beispiele-zur-verwaltungsschale-der-industrie-40-komponente-basisteil/
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/security-rami40-en.html
https://www.din.de/de/forschung-und-innovation/themen/industrie4-0/roadmap-industrie40-62178
https://www.din.de/de/forschung-und-innovation/themen/industrie4-0/roadmap-industrie40-62178
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-gipfel.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-gipfel.html
https://www.eks-intec.de/i40-begriffe/FA7.21%20Begriffe%20-%20Industrie%204.0
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-relationship.html
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-relationship.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Industrie-40-20Plug-and-Produce.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Industrie-40-20Plug-and-Produce.html

paper, April 2017. Accessed: 2025-03-24. [Online]. Available: http://www.plattform-
i40.de/I40/Redaktion/DE/Downloads/Publikation/security-der-verwaltungsschale.html

[16] DIN SPEC 92000:2019-09 "Data Exchange on the Base of Property Value Statements (PVSX)", 2019 September.
Withdrawn. This document has been replaced by: DIN SPEC 92000:2020-08. Accessed: 2025-03-24. [Online].
Available: https://www.dinmedia.de/en/technical-rule/din-spec-92000/320981982

[17] "(German) Verwaltungsschale in der Praxis. Wie definiere ich Teilmodelle, beispielhafte Teilmodelle und
Interaktion zwischen Verwaltungsschalen", Version 1.0, April 2019, Plattform Industrie 4.0 in Kooperation mit
VDI/VDE-GMA Fachausschuss 7.20, Federal Ministry for Economic Affairs and Energy (BMWi). Accessed: 2025-03-
24. [Online]. Available: https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2019-
verwaltungsschale-in-der-praxis.html

[18] (German) "I4.0-Sprache. Vokabular, Nachrichtenstruktur und semantische Interaktionsprotokolle der I4.0-
Sprache", Plattform Industrie 4.0 in Kooperation mit VDI/VDE-GMA Fachausschuss 7.20, April 2018. Accessed: 2025-
03-24. [Online]. Available: https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-
sprache.html

[19] "The Structure of the Administration Shell: TRILATERAL PERSPECTIVES from France, Italy and Germany",
March 2018, Accessed: 2025-03-24. [Online]. Available: https://www.plattform-
i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.html

[20] "Industrial automation systems and integration — Exchange of characteristic data — Part 10: Characteristic data
exchange format", Technical Specification ISO/TS 29002-10:2009-12(E), 2009. Accessed: 2025-03-24. [Online].
Available: https://www.dinmedia.de/de/vornorm/iso-ts-29002-10/125041143

[21] "Smart Manufacturing - Reference Architecture Model Industry 4.0 (RAMI4.0)", IEC PAS 63088:2017,
International Electrotechnical Commission (IEC), 2017. Withdrawn. Accessed: 2025-03-24. [Online]. Available:
https://webstore.iec.ch/en/publication/30082

[22] "System.IO.Packaging Namespace", MSDN. Accessed: 2025-03-24. [Online]. Available:
https://msdn.microsoft.com/en-us/library/system.io.packaging(v=vs.110).aspx

[24] ISO 13584-42 "Standard data element types with associated classification scheme – Part 1: Definitions –
Principles and methods" Edition 4.0, 2017-07

[25] IEC 61360-1 "Standard data element types with associated classification scheme – Part 1: Definitions – Principles
and methods", Edition 4.0, 2017-07. DIN EN 61360-1:2018-07.

[26] ISO/TS 29002-10:2009(E) "Industrial automation systems and integration — Exchange of characteristic data —
Part 10: Characteristic data exchange format", First edition 2009-12-01

[27] A. Bayha, J. Bock, B. Boss, C. Diedrich, S. Malakuti "Describing Capabilities of Industrie 4.0 Components". Nov.
2020. Plattform Industrie 4.0. Accessed: 2025-03-24. [Online]. Available: https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/Capabilities_Industrie40_Components.html

[29] H. Knublauch, D. Knotokostas "Shapes Constraint Language (SHACL)" W3C Recommendation, 2017, Accessed:
2025-03-24. [Online]. Available: Available: https://www.w3.org/TR/shacl/

[31] DIN EN IEC 61406-1: "Identification Link - Part 1: General requirements (IEC 61406-1:2022)". December 2023.
Online. Available: https://www.dinmedia.de/en/standard/din-en-iec-61406-1/372053652

[32] F. Manola, E. Miller "RDF 1.1 Primer" W3C Recommendation, 2014, Accessed: 2025-03-24. [Online]. Available:
https://www.w3.org/TR/rdf11-primer/

[33] T. R. Gruber "A translation approach to portable ontology specifications." Knowledge acquisition 5.2 (1993): 199-
220. Accessed: 2025-03-24. [Online]. Available: https://tomgruber.org/writing/ontolingua-kaj-1993.htm

[34] "The Industrial Internet of Things Vocabulary". Technical Report. Version 2.3. October 10, 2020. Industrial Internet
Consortium. IIC:IIVOC:V2.3:20201025 Accessed: 2025-03-24. [Online]. Available: https://www.iiconsortium.org/vocab/

262

http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/security-der-verwaltungsschale.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/security-der-verwaltungsschale.html
https://www.dinmedia.de/en/technical-rule/din-spec-92000/320981982
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2019-verwaltungsschale-in-der-praxis.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2019-verwaltungsschale-in-der-praxis.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-sprache.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-sprache.html
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.html
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.html
https://www.dinmedia.de/de/vornorm/iso-ts-29002-10/125041143
https://webstore.iec.ch/en/publication/30082
https://msdn.microsoft.com/en-us/library/system.io.packaging(v=vs.110).aspx
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Capabilities_Industrie40_Components.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Capabilities_Industrie40_Components.html
https://www.w3.org/TR/shacl/
https://www.dinmedia.de/en/standard/din-en-iec-61406-1/372053652
https://www.w3.org/TR/rdf11-primer/
https://tomgruber.org/writing/ontolingua-kaj-1993.htm
https://www.iiconsortium.org/vocab/

[35] "OMG Unified Modelling Language (OMG UML)". Formal/2017-12-05. Version 2.5.1. December 2018. Accessed:
2025-03-24. [Online]. Available: https://www.omg.org/spec/UML/

[36] T. Preston-Werner "Semantic Versioning". Version 2.0.0. Accessed: 2025-03-24. [Online]. Available:
https://semver.org/spec/v2.0.0.html

[37] IDTA-01002 "Specification of the Asset Administration Shell Part 2 – Application Programming Interfaces". See
[46].

[38] "Asset Administration Shell. Reading Guide". Industrial Digital Twin Association. November 2022. Accessed:
2025-03-24. [Online]. Available: https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2022/12/2022-12-
07_IDTA_AAS-Reading-Guide.pdf

[39] IDTA-02003 "Submodel Template of the Asset Administration Shell - Generic Frame for Technical Data for
Industrial Equipment in Manufacturing", Version 1.2, Aug. 2022, Industrial Digital Twin Association See [45].

[40] IDTA-02006 "Submodel Template of the Asset Administration Shell - Digital Nameplate for Industrial Equipment",
Version 2.0, Oct. 2022, Industrial Digital Twin Association See [45].

[43] IEC 63278-2 "Asset Administration Shell for industrial applications – Part 2: Metamodel".

[44] IEC 63278-1:2023 "Asset Administration Shell for industrial applications – Part 1: Asset Administration Shell
structure".

[45] "Registered AAS Submodel Templates". Industrial Digital Twin Association. Accessed: 2025-03-24. [Online].
Available: https://industrialdigitaltwin.org/en/content-hub/submodels

[46] "AAS Specifications". Accessed: 2025-03-24. [Online]. Available: https://industrialdigitaltwin.org/en/content-
hub/aasspecifications

[47] (German) "I4.0-Sprache. Vokabular, Nachrichtenstruktur und semantische Interaktionsprotokolle der I4.0-
Sprache", Discussion Paper. Plattform Industrie 4.0 Accessed: 2025-03-24. [Online]. Available: https://www.plattform-
i40.de/IP/Redaktion/DE/Downloads/Publikation/hm-2018-sprache.html

[48] "How to create a submodel template specification". Guideline. December 2022. Industrial Digital Twin Association.
Accessed: 2025-03-24. [Online]. Available: https://industrialdigitaltwin.org/wp-content/uploads/2022/12/I40-IDTA-WS-
Process-How-to-write-a-SMT-FINAL-.pdf

[49] Vincent Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin, Robert Miller and Karen Scarfone,
"Guide to Attribute Based Access Control (ABAC) Definition and Considerations", NIST Special Publication 800-162,
Jan. 2014. Accessed: 2025-03-24. [Online]. Available: http://dx.doi.org/10.6028/NIST.SP.800-162

[50] "Secure Download Service", Discussion Paper. Oct. 2020, Plattform Industrie 4.0 Accessed: 2025-03-24. [Online].
Available: https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/secure_downloadservice.html

[51] "Repository of the Industrial Digital Twin Association (IDTA)". Industrial Digital Twin Association. Accessed: 2025-
03-24. [Online]. Available: https://github.com/admin-shell-io

263

https://www.omg.org/spec/UML/
https://semver.org/spec/v2.0.0.html
https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2022/12/2022-12-07_IDTA_AAS-Reading-Guide.pdf
https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2022/12/2022-12-07_IDTA_AAS-Reading-Guide.pdf
https://industrialdigitaltwin.org/en/content-hub/submodels
https://industrialdigitaltwin.org/en/content-hub/aasspecifications
https://industrialdigitaltwin.org/en/content-hub/aasspecifications
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/hm-2018-sprache.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/hm-2018-sprache.html
https://industrialdigitaltwin.org/wp-content/uploads/2022/12/I40-IDTA-WS-Process-How-to-write-a-SMT-FINAL-.pdf
https://industrialdigitaltwin.org/wp-content/uploads/2022/12/I40-IDTA-WS-Process-How-to-write-a-SMT-FINAL-.pdf
http://dx.doi.org/10.6028/NIST.SP.800-162
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/secure_downloadservice.html
https://github.com/admin-shell-io

218 | Asset Administration Shell Specification - Part 1: Metamodel

www.industrialdigitaltwin.org

	Part 1: Metamodel
	Terms and Definitions
	Preamble
	Introduction
	Specification (normative)
	Overview
	Designators
	Referencing
	Data Types
	Constraints

	Data Specifications
	Mappings (normative)
	Summary and Outlook
	Annex
	Concepts AAS
	General Topics
	Value Only Serialization Example
	Backus Naur Form
	UML Templates
	UML
	Grammar Semantic IDs for Metamodel
	Handling Constraints
	Overview Constraints
	Usage Metamodel
	Metamodel With Inheritance

	Change Log
	Bibliography

