

WHITE PAPER
AAS Events
Specification Understanding – Explanation, Modelling
Approaches, and Examples

May 2025

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 1

Authors and contributors

Alexander Belyaev, ifak e.V.

Raghavendra Ungarala, Hochschule Karlsruhe

Melanie Stolze, ifak e.V.

Prof. Dr.-Ing. Michael Hoffmeister, Hochschule Karlsruhe

Dr.-Ing. Matthias Riedl, ifak e.V.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 2

Contents
Contents .. 1

List of Figures ... 4

List of Abbreviations .. 5

1 Introduction and Motivation ... 6

2 Explanation of the specification of the AAS BasicEventElement .. 7

2.1 General ... 7

2.2 What exactly can be subscribed? ... 7

2.3 Specification of the BasicEventElement... 9

2.4 Integration of the BasicEventElement in the AAS-Structure ... 9

2.4.1 General .. 9

2.4.2 Assigning the BasicEventElement directly to the existing Submodel 10

2.4.3 Creation of the separate Submodel for Events ... 11

2.5 Content of the Event – application of the metamodel for EventPayload 11

2.6 Relation between BasicEventElement and EventPayload ... 13

3 Generic Use Cases for the Application of Event Mechanism .. 14

3.1 System Architecture ... 14

3.2 Use Cases ... 15

3.2.1 The external software application subscribes the updates of the AAS 15

3.2.2 AAS subscribes the external Data Source .. 15

3.2.3 One AAS subscribes the updates of another AAS .. 16

4 Technological implementations .. 16

4.1 General ... 16

4.2 HTTP REST-Based Event Handling .. 17

4.2.1 Key Attributes of AAS Events ... 17

4.2.2 HTTP REST as a Transport Layer for AAS Events .. 17

4.2.3 Push scenario in EventHandling using REST API .. 18

4.2.4 Pull Scenario in Event Handling using REST API ... 19

4.3 MQTT.. 20

4.3.1 MQTT as a Transport Layer for AAS Events ... 20

4.3.2 Architecture and Message Flow .. 20

5 Generic Event Subscriptions Patterns in the AAS .. 21

5.1 Application of the Event Mechanism Across Multiple Use Cases .. 21

5.2 Generic Event Handling for Changes within Submodel Hierarchies 21

5.2.1 Explanation of the Subscription Pattern .. 21

5.2.2 Example Use Case: Automated firmware update notification using PCN submodel 23

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 3

5.2.3 Example Use Case: Real-Time Temperature Monitoring with the Time Series Data
Submodel ... 24

5.2.4 Example Use Case: Component replacement in the BOM .. 24

5.3 Subscription to Structural Changes at AAS Level ... 25

5.3.1 Explanation of the Subscription Pattern .. 25

5.3.2 Example Use Case: Procurement Workflow with PRN, PRR, and POC Submodels 26

6 Summary and Outloook... 27

7 References ... 28

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 4

List of Figures
Figure 1: Elements of an AAS can be subscribed to via the AAS event mechanism 6
Figure 2: Structure of the discussion paper .. 7
Figure 3: Overview of AAS change types available for event subscription ... 8
Figure 4: Specification of the BasicEventElement in the AAS Metamodel.. 9
Figure 5: Assignment and parameterization of the BasicEventElement ... 10
Figure 6: Separate Submodel containing configured BasicEventElements ... 11
Figure 7: Event content encapsulated in the EventPayload structure .. 12
Figure 8: Relationship between BasicEventElement and EventPayload in the Modelling process 13
Figure 9: Event subscription architecture with a middleman between publisher and subscriber 14
Figure 10: Direct subscription to the event source without intermediary components 14
Figure 11: External software application subscribing to updates from the AAS................................... 15
Figure 12: Subscription-based data acquisition from an external source by the AAS 15
Figure 13: Event-based update mechanism between two AAS .. 16
Figure 14: HTTP-based subscription setup involving a middleman service .. 17
Figure 15: REST API-Based Event Handling: Push Scenario ... 18
Figure 16: REST API-Based Event Handling: Pull Scenario ... 19
Figure 17: MQTT-based communication between AAS and external systems 20
Figure 18: UML class diagram for the use case ... 22
Figure 19: Object diagram for the use case .. 23
Figure 20: UML class diagram for the use case ... 25
Figure 21: UML object diagram for the use case .. 25
Figure 22: Data Exchange during Procurement using PRN, PRR, and POC Submodels 26

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 5

List of Abbreviations
AAS Asset Administration Shell

PCN Product Change Notification

PRR Purchase Request Response

POC Purchase Order Creation

IDTA Industrial Digital Twin Association

MQTT Message Queuing Telemetry Transport

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

API Application Programming Interface

SME SubmodelElement

SM Submodel

ERP Enterprise Resource Planning

MES Manufacturing Execution System

TLS Transport Layer Security

CAD Computer-Aided Design

DNS Domain Name System

IP Internet Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

JSON JavaScript Object Notation

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 6

1 Introduction and Motivation
According to the AAS Metamodel, it is possible to subscribe and receive updates and changes regarding
various elements and concepts within the AAS - as a Digital Twin itself - and its environment. This is
achieved through a subscription mechanism, a concept widely used in our everyday lives to receive
timely notifications, updates, and alerts about relevant changes or new information, such as social
media updates, news alerts, weather forecasts, streaming services, calendar reminders, or software
updates.

Figure 1: Elements of an AAS can be subscribed to via the AAS event mechanism

In the context of the AAS, the design pattern used for this purpose is the Event Mechanism. The
elements of AAS that can be subscribed, or to which the AAS Event Mechanism can be applied, as
introduced in Figure 1, include the following:

• Changes to the meta-information of the AAS
• Changes in the structure of the AAS
• Updates to individual Submodels
• Updates to individual Properties

The purpose of this whitepaper is to explain the application of the AAS Event Mechanism, demonstrate
how to model the subscription of different components within the AAS using the BasicEventElement
specified in the AAS Metamodel ((IDTA), April 2023), and illustrate various application scenarios. These
include understanding the specification of the AAS EventElement, applying and configuring this
element to subscribe to changes in the mentioned AAS elements. The concepts defined in the
metamodel are quite flexible. They also allow the use of events in the opposite direction — enabling
the AAS itself to act as a subscriber and receive updates from another AAS or an external source. The
EventElement supports the reception of such updates, enabling the AAS to incorporate them into the
corresponding elements of its own submodels.

This document serves as a discussion basis intended to inspire and support initial engagement with the
AAS event mechanism and to motivate its practical application. The discussion paper does not
prescribe specific modelling approaches or implementation technologies. Instead, it encourages the
community to further explore and apply the event mechanism concept.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 7

Moreover, this publication is envisioned as part of an ongoing series. Future editions will strongly
emphasize the topic of security in the context of AAS events, as well as present concrete application
scenarios from Manufacturing-X projects.

To address this objective, the discussion paper is organized as depicted in Figure 2.

Chapter 2 begins by clarifying what constitutes a change that can be subscribed within the context of
the AAS, including the types of possible changes and identifying which elements of the AAS can be
subscribed for change notifications. Subsequently, the specification of the EventElement, a
metamodel element of the AAS enabling subscriptions, is explained. Following this, a basic modelling
approach is introduced, accompanied by modelling examples.

In Chapter 3, an example system architecture is presented, illustrating initial possible configurations
and highlighting the flexibility inherent in the AAS event concept. This section details how the
EventElement introduced in Chapter 2 can be used to model three distinct scenarios: first, subscribing
an external application to changes within an AAS; second, the scenario where the AAS itself subscribes
to changes from an external data source; and third, the scenario where one AAS subscribes to changes
in another AAS.

Chapter 4 addresses various approaches to system architecture and explores different technological
implementations of the event mechanism, initially focusing on two technologies, HTTP REST and
MQTT.

Chapter 5 illustrates the application of the event concept to subscribing to selected Submodels,
including detailed modelling examples. Finally, Chapter 6 summarizes the current state of discussion
regarding the EventElement and outlines the next steps.

Figure 2: Structure of the discussion paper

2 Explanation of the specification of the AAS BasicEventElement

2.1 General

In this chapter, modelling elements defined by the AAS Metamodel, such as the BasicEventElement
and EventPayload, are explained. Particular attention is given to their specification and significance.
Additionally, the actual subscription modelling process is demonstrated, outlining relevant modelling
decisions and essential configuration steps. An initial answer is provided to the question, “Where
should the EventElement be attached?”, presenting two potential approaches: either by attaching it
directly to the submodel whose elements are being subscribed, or creating a separate dedicated
Submodel to collect and manage all created EventElements.

2.2 What exactly can be subscribed?

The EventElement is designed to enable subscriptions and notifications regarding changes within the
structure of an AAS, including its submodels and the elements they contain. But which specific types
of changes can be communicated through event mechanisms? This question is addressed in the
following chapter. Relevant changes include:

• Structural changes in AAS

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 8

• Updates to SubmodelElements and their attributes

Structural changes encompass the creation of new elements or the deletion of existing ones. Updates
typically involve modifying values, such as changing the value of a property. In this context, three types
of changes are identified: create, update, and delete.

The change types create and delete are directly associated with structural modifications, whereas
updates to AAS elements (as shown in Figure 3) align primarily with the update type. To enable
automated recognition of the meaning of events and identification of the type of change, globally
unique semantic IDs for these change types should be defined. This ensures that the specific type of
change can be clearly identified in the EventPayload. Consequently, the recipient of an event
notification can either explicitly recognize the type of change being communicated or, in more
advanced applications, easily filter and search for particular types of changes.

Figure 3 demonstrates the change types can be modelled using the EventElement and clarifies the
meaning of each change type (create, update, delete) in relation to specific AAS elements or the AAS
itself. For example, the specified event mechanism allows subscriptions to the creation or deletion of
an Asset’s AAS. Changes within the AAS can also be subscribed to in a more fine-grained manner. It is
possible to subscribe and receive notifications about modifications to specific elements of the AAS,
including structural changes or updates within Submodels, relevant concept descriptions, and AAS
Meta-information.

Figure 3: Overview of AAS change types available for event subscription1

Updating a Submodel, for instance, can mean structural modifications or updates to underlying
SubmodelElements, such as creating or deleting a SubmodelElement or updating its value.

1 Created in the Project VWS4LS

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 9

2.3 Specification of the BasicEventElement

To enable subscriptions, the AAS Metamodel specifies the BasicEventElement, whose specification is
illustrated in Figure 4.

Figure 4: Specification of the BasicEventElement in the AAS Metamodel

The listed attributes of the EventElement have the following meanings ((IDTA), April 2023):

• observed: Reference to a referable element.
• direction: Defines the direction of the event (input or output).
• state: Status of the event (on or off).
• messageTopic: Unique identifier of the event for message transmission
• messageBroker: Reference to an application responsible for receiving and distributing event

messages.
• lastUpdate: Timestamp indicating when the most recent event was sent or received.
• minInterval: Minimum time interval between sending or receiving events.
• maxInterval: Maximum time interval allowed between outgoing event transmissions when no

other trigger has occurred. This applies only to outgoing events.

It can be observed that the event description itself is technology neutral. However, the use of typical
MQTT terminology in the specification of the BasicEventElement may create the impression that the
use of MQTT with an MQTT broker and MQTT topics for event transmission is implicitly assumed in the
AAS specification. This, however, is not entirely accurate, as such an assumption is not explicitly made
in the specification. Therefore, other technologies are not excluded. Nevertheless, alternative
technologies frequently adopt concepts like those of MQTT brokers and topics. One example is an
HTTP/REST interface, where public servers can analogously act as brokers and endpoints serve as
equivalents to the topics to which events are sent.

2.4 Integration of the BasicEventElement in the AAS-Structure

2.4.1 General

The next chapter presents a step-by-step example demonstrating how a BasicEventElement can be
used to subscribe to a specific element within an AAS. As a guiding example, the subscription to
updates of a property value is chosen.

To subscribe to an element of the AAS, the EventElement must first be created and properly integrated
into the AAS structure. This means it needs to be assigned to an appropriate location within the model.
Two alternative approaches are available:

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 10

• Assignment to an existing Submodel: The BasicEventElement is assigned directly to the
Submodel containing the element to be subscribed. This method is described in Chapter 2.4.2
and corresponds to Step 1 as illustrated in Figure 5.

• Creation of a dedicated Submodel: A dedicated Submodel is created specifically to host and
manage all BasicEventElements defined within the AAS. For example, a “Subscriptions”
Submodel can be created to collect and centrally manage all event elements. This approach is
demonstrated in Chapter 2.4.3.

2.4.2 Assigning the BasicEventElement directly to the existing Submodel

Figure 5: Assignment and parameterization of the BasicEventElement

After creation, the EventElement requires parameterization and configuration. In Step 2, the property
to which the subscription should apply must be referenced. This is done by specifying a reference,
including the path to the corresponding AAS element — in this example, a property.

In the next step, the direction of the event must be specified. It is important to note that the event
mechanism supports two functional options regarding the direction of information flow:

• Option1 – EventElement as a source: In this case, the EventElement serves as the origin of
event notifications. A subscribing application can receive updates about the AAS element
referenced by this EventElement, such as a property.

• Option 2 – EventElement as a receiver: In this case, the EventElement is used to receive events
from external sources. These external updates are then applied to the AAS element referenced
in the EventElement.

This illustrates the flexibility of the AAS event concept, as it supports bidirectional data flow: external
clients can subscribe to changes within the AAS, and the AAS itself can subscribe to updates from
external data sources. The direction of the data flow is defined in Step 3 by setting the value to either
OUT (publishing updates) or IN (receiving updates).

In the next step, the state attribute can be used to control the intended behavior of the EventElement.
For example, it can be set to publish to activate event publishing, or to off to stop publishing.

One possible implementation of the subscription mechanism involves an intermediary component
positioned between the data source and the data consumer. This concept is explored further in

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 11

Chapter 3. The specification supports the definition of a topic (e.g., an MQTT topic) to which updates
are published (Step 5). When using the REST API, an HTTP endpoint (URI) should be entered in this
parameter so that updates can be received via HTTP methods such as POST or PUT.

In Step 6, when connecting to an MQTT broker, the IP address or DNS name along with the appropriate
port number must be specified.

Finally, Step 7 allows for the definition of the desired update frequency, which determines how often
updates are sent to the subscriber.

2.4.3 Creation of the separate Submodel for Events

This chapter describes the possibility of the creation of a separate Submodel to serve as a container
for all EventElements. This concept assumes that for each AAS element to be subscribed, a new
BasicEventElement is created and assigned to this dedicated Submodel.

Figure 6: Separate Submodel containing configured BasicEventElements

The individual steps required to configure each BasicEventElement are identical to those described in
the previous chapter. The assignment of the EventElements to the observed Submodel or AAS element
is done by referencing the corresponding element in the observed attribute, as illustrated in Figure 6

2.5 Content of the Event – application of the metamodel for EventPayload

In addition to the BasicEventElement, the AAS specification defines the EventPayload, the actual
content transmitted when an event is triggered. The structure of this payload is specified in the AAS
Metamodel, as illustrated in Figure 7 and further explained in the following section.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 12

Figure 7: Event content encapsulated in the EventPayload structure

The attributes of the EventPayload have the following meanings ((IDTA), April 2023):

• source: Reference to the associated EventElement.
• sourceSemanticId: Semantic ID of the EventElement, preferably as an external reference.

The concept proposes defining a unique semantic ID for each type of change—namely create,
delete, and update—as identified within the context of this discussion paper. These semantic
IDs are specified explicitly, providing the capability to clearly communicate and distinguish the
type of change that has occurred. Additionally, User- and Use Case-specific types of changes
can be defined.

• ObservableReference: Refers to the AAS element that has been updated or created. This is
the actual "new" fact that the event intends to communicate to subscribers.

• ObservableSemanticId: the semantic ID of the updated or newly created element.

It is important to note that the observableReference in the EventPayload does not necessarily have
to match the element referenced by the observed attribute of the BasicEventElement. They can be
the same, especially in cases where the exact element being observed is also the one that was
modified. This is demonstrated in the example in Chapter 2.6, where a specific SubmodelElement, a
property, is subscribed, and its value is subsequently updated.

However, this is not always the case. In some use cases, the subscription is made to a broader element
within the AAS, for example, an entire Submodel, while the actual change affects only a single
SubmodelElement. Suppose a new property is created and assigned to the Submodel: the intended
message to the subscriber would be, “You subscribed to this particular submodel, and it has been
updated, specifically, a new property was added.” In such a case, the observed attribute of the
EventElement points to the Submodel, while the observableReference in the EventPayload refers to
the newly created property.

• topic: Identical to the messageTopic of the BasicEventElement.
• subjectId: Reference to the subject that generated the event.
• timestamp: Timestamp indicating when the event was triggered.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 13

• payload: Event-specific content provided as a Blob element.

2.6 Relation between BasicEventElement and EventPayload

Since the two models, BasicEventElement and EventPayload, are defined independently in the AAS
Metamodel and share several similarly named attributes, a natural question arises: What is the
relationship between these two elements, and how should their individual attributes be interpreted and
modelled together? A possible interpretation is illustrated in Figure 8, using the subscription to a
property as a guiding example.

Figure 8: Relationship between BasicEventElement and EventPayload in the Modelling process

It is important to note that this example represents only one specific case, namely, the scenario where
the SubmodelElement being observed is exactly the same element that was updated. In such a case,
the values of the observed attribute (in the BasicEventElement) and the observableReference
attribute (in the EventPayload) are identical.

However, this one-to-one correspondence is not always present. As described in the previous chapter,
there are other event handling patterns, where the observed element is broader, for example, a
submodel, while the actual update occurs within one of its contained elements. In such cases, as
mentioned above, the observed attribute may point to the entire submodel, while the
observableReference in the EventPayload refers to the specific element (e.g., a newly created
property) that was changed. Further examples of this subscription pattern are discussed in Chapter 5.

It should be also noted that, according to the metamodel specification, the BasicEventElement itself
is a SubmodelElement and thus inherits descriptive attributes, including Referable, HasSemantics,
Qualifiable, and HasDataSpecification.

• The Referable attribute provides the unique path to identify the BasicEventElement within an
AAS.

• The HasSemantics attribute indicates the type of change the EventElement is intended to
notify about, e.g., create, update, delete, or custom types, and must be uniquely identified via
a semantic ID.

• The observed attribute references the Referable of the AAS element that is being monitored.

The specification of other attributes follows the descriptions provided in Chapter 2.5.

On the EventPayload side, the source attribute refers to the Referable of the originating
BasicEventElement. The sourceSemanticId reflects the same semantic meaning as the HasSemantics

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 14

attribute in the EventElement. The observableReference should reference the AAS element that was
actually modified, which may or may not match the observed attribute of the EventElement. The
observableSemanticId holds the semantic ID of that changed element. Lastly, the topic attribute
carries the same information as the messageTopic in the BasicEventElement.

3 Generic Use Cases for the Application of Event Mechanism

3.1 System Architecture

Figure 9: Event subscription architecture with a middleman between publisher and subscriber

The use of typical MQTT terminology in the specification of the EventElement might create the
impression that the use of MQTT with an MQTT broker and MQTT topics is implicitly assumed.
However, this is not entirely correct, as it is not explicitly defined in the specification. Other
technologies are therefore not excluded. Nevertheless, other technologies often use concepts similar
to those of an MQTT broker and topics.

Figure 10: Direct subscription to the event source without intermediary components

Therefore, a technology-agnostic architectural approach shown in Figure 9 can be derived: the use of
event routing components that act as intermediaries between event publishers and subscribers.
Depending on the chosen implementation technology, this component may take on different forms.
For example, in the case of an HTTP/REST interface, public servers act as an analogy to a broker, and
endpoints serve as the equivalent of topics to which events are sent.

The implementation concepts made possible by the definition of the BasicEventElement are highly
flexible, making them relevant even in the absence of a event routing component. This implementation
variant is illustrated in Figure 10.

In this case, an AAS or another proprietary application can retrieve events directly from another AAS
or its repository without requiring event-routing components such as a broker.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 15

3.2 Use Cases

3.2.1 The external software application subscribes the updates of the AAS

The most common Use Case is likely the subscription to updates of an AAS by an external application,
as illustrated in Figure 11. In this scenario, the modeler creates a BasicEventElement within the AAS
and attaches it to the corresponding Submodel. Possible options for this setup are described in the
chapter 2.4. Following the outlined modelling process, the modeler configures the subscription. The
observed attribute references the element being monitored, while the direction attribute is set to
OUT. This indicates that the event is sent externally, meaning the AAS acts as the data source or event
source. If an event-routing component is used, the messageTopic and messageBroker attributes are
configured accordingly.

Figure 11: External software application subscribing to updates from the AAS

3.2.2 AAS subscribes the external Data Source

The Event Mechanism not only allows the configuration of subscriptions on the event sender side but
also enables an AAS to act as a subscriber to events originating from external applications. To configure
the handling of incoming events and the subscription itself, the BasicEventElement is also used. This
scenario is illustrated in Figure 12.

Figure 12: Subscription-based data acquisition from an external source by the AAS

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 16

In this setup, the BasicEventElement is configured to determine how the AAS processes the
information received from an incoming event. Unlike the previous case, the configuration of the
observed attribute in this scenario does not refer to the element being monitored, but rather to the
element within the AAS that is affected or influenced by the observed change.

Additionally, the direction attribute is set to IN to indicate that the event is being received by the AAS,
clarifying its role as an input. The remaining attributes are configured similarly to the previous scenario.
In the messageTopic and messageBroker attributes, the address that the AAS needs to subscribe to is
specified.

3.2.3 One AAS subscribes the updates of another AAS

In the possible subscription scenarios for updates from and through an AAS, an external software
application does not necessarily have to play a role. In the previously described scenarios, an external
application acted as both the event receiver and event source.

As an extension of these scenarios, and thanks to the ability of the BasicEventElement to model both
incoming and outgoing events, another scenario becomes possible. An AAS could be able to subscribe
to updates from another AAS. This scenario is illustrated in Figure 13.

In this case, the AAS that serves as the event source is configured with an EventElement where
direction = OUT, while the subscribing AAS contains a corresponding EventElement with direction =
IN. If an event routing component (e.g., a broker) is used, it is configured according to the modelling
approach described in the previous chapters of this document.

Figure 13: Event-based update mechanism between two AAS

4 Technological implementations
4.1 General

This chapter describes possible technological implementations for transporting events between the
event source and event subscriber within the AAS framework. The AAS Metamodel specification does
not impose any strict requirements or definitions for event transport. Instead, the event mechanism is
designed to be flexible and adaptable to different technologies.

To initiate this discussion and lay a foundation for future exploration, this chapter focuses on two
widely used technologies: HTTP REST and MQTT.

HTTP REST is a widely adopted approach for implementing event mechanisms, aligning with traditional
web-based architectures. Within the AAS ecosystem, REST can be used in scenarios where a subscriber
actively polls for updates rather than receiving push notifications.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 17

Chapter 4.2 outlines how HTTP REST can be utilized for event management, defining key attributes,
implementation strategy, and possible use case.

4.2 HTTP REST-Based Event Handling

4.2.1 Key Attributes of AAS Events

Within this conceptual framework, two key attributes might define event implementation using REST-
API which are the Event Direction and Event Mode.

Event Direction: As outlined in the AAS Metamodel, the event element includes an attribute called
direction, which determines the flow of event communication. This attribute may take one of two
values:

• Inbound (IN): Indicates that the AAS handles incoming events.
• Outbound (Out): Indicates that the AAS generates and transmits the events.

Event Mode: The event mode could be an additional attribute being defined to define the action of
the event. Whether it is pulling from or pushing into the AAS. This concept will be particularly relevant
in scenarios where different interaction models, such as push-based or pull-based event handling, are
considered which is explained in the following sections.

• Push Mode: The AAS actively sends event data to a subscriber when an event is triggered.
• Pull Mode: The AAS requests event data from a event routing component or another AAS at

defined intervals.

While not explicitly defined in the AAS metamodel, the concept of "event mode" is introduced to better
understand how events are handled in REST API implementations and system interactions. It refers to
the way event data is transmitted or retrieved. This distinction helps in designing interaction models
and system architectures, but it does not represent a formal attribute or property in the AAS
specification.

4.2.2 HTTP REST as a Transport Layer for AAS Events

A scenario is defined to discuss in detail about the HTTP REST-based Event Mechanism which consists
of three main components.

1. AAS hosted in Server A: Detects changes and pushes event data to a server.
2. AAS hosted in Server B: Stores event data and provides an API for event data retrieval.
3. AAS hosted in Server C: Polls the public server for new event updates

Figure 14: HTTP-based subscription setup involving a middleman service

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 18

The three components together illustrate (See Figure 14) the PUSH/PULL approach of the REST API,
which is further explained below. Also, in this scenario both Server A and Server C are internal company
servers, whereas Server B functions as a public server of Company A. A key architectural feature is the
implementation of an intermediary layer—such as a firewall—between the three servers. This design
enhances security by isolating the internal network from external access, thereby preventing direct
exposure of AAS instances to potential external threats

4.2.3 Push scenario in EventHandling using REST API

In the push scenario, an AAS functions as an event source or publisher, actively transmitting data to a
consumer (another AAS or a public server) whenever an event element is triggered. Figure 15
illustrates the corresponding Information und request flow.

Figure 15: REST API-Based Event Handling: Push Scenario

The EventElements in this scenario are modelled in the same Submodel as described in chapter 2.4.2.
Upon detecting the change, the event from the publisher AAS pushes the updated data to a designated
Submodel hosted on a public server. The public server AAS also contains an event element that
monitors the SubmodelElement where the updated information is stored. As a result, there are two
interconnected events in the system.

The EventElement in the publisher AAS is responsible for monitoring changes and actively pushing
updates to the public server. It is modeled as follows:

• observed: The Submodel or SubmodelElement in the AAS where the change is detected.
• direction: Out (Indicates that the event data is transmitted outward).
• mode: Push (The event is modelled for Push scenario).
• state: On (The event mechanism is active).
• messageTopic: The endpoint of the SubmodelEslement in the publis server where the update

is to be pushed.

The EventElement in the public server AAS is responsible for observing the update and ensuring that
the event is processed. It is modelled as follows:

• observed: The Submodel (SM) or SubmodelElement (SME) where the update takes place.
• direction: In (Indicates that the data from the events is incoming).
• mode: Push (The event is modelled for Push scenario).
• state: On (The event mechanism is active).

The payload is delivered via REST API using the PUT method, ensuring that the data is updated
efficiently at the designated endpoint.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 19

4.2.4 Pull Scenario in Event Handling using REST API

In a pull-based event handling architecture, the AAS is responsible for actively retrieving event data
from a remote AAS server or another AAS instance. Unlike the push model, where updates are
automatically sent, the pull model requires the consumer AAS to initiate data retrieval by sending pull
requests at predefined intervals or in response to specific triggers.

As shown in Figure 16, the public server maintains an EventElement that observes a Referable
element. When a change is detected in the observed element, the event is triggered and the
corresponding EventPayload is updated with the latest data. The Consumer AAS polls the event
endpoint where the update is stored by issuing HTTP GET requests. Upon detecting a change often
determined by comparing timestamps the Consumer AAS parses the EventPayload and uses the
contained information to dynamically create or update a SubmodelElement within its own AAS
instance.

Figure 16: REST API-Based Event Handling: Pull Scenario
The EventElement in the AAS of the public server is responsible for monitoring changes and storing
recent updates. It is structured as follows:

• observable: The Submodel (SM) or SubmodelElement (SME) in the AAS where the change is
to be detected.

• direction: Out
• mode: Pull (The event element operates under the pull model).
• state: On (The event mechanism is active).

The EventElement within the Consumer AAS is configured to poll the public server for updates. It is
modelled as follows:

• observable: The Submodel (SM) or SubmodelElement (SME) where the update takes place.
• direction: In
• mode: Pull (The event element operates under the pull model).
• state: On (The event mechanism is active).
• messageTopic: The endpoint of the SubmodelElement where the update is stored in the public

server

This pull-based configuration optimizes network efficiency by ensuring that data is retrieved only when
explicitly requested thus preventing unnecessary data transmission. By employing this structured pull
mechanism, the system ensures efficient and controlled event retrieval, making it particularly suitable
for scenarios where event frequency varies or where excessive data traffic needs to be avoided.

To ensure secure event processing, the REST API incorporates multiple layers of protection, including
authentication, encrypted communication via HTTPS (TLS), and digital signatures. Additionally, rate

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 20

limiting is implemented to prevent excessive polling. These security mechanisms will be described in
more detail in the subsequent versions.

4.3 MQTT

4.3.1 MQTT as a Transport Layer for AAS Events

MQTT (Message Queuing Telemetry Transport) provides a lightweight, scalable, and efficient
mechanism for handling event-based communication. This section describes how MQTT can be used
for event-driven data exchange within the AAS ecosystem. As illustrated in the Figure 17 the MQTT can
serve as the transport protocol to facilitate the transport of AAS Events, allowing different
components, such as AAS instances, industrial applications, or external monitoring systems, to publish
and subscribe to event data.

Figure 17: MQTT-based communication between AAS and external systems

In an MQTT-based AAS event architecture, the following roles can be defined:

• AAS as Event Source: Publishes change notifications related to its Submodels.
• AAS user application: Subscribes to relevant topics to receive change notifications from the

subscribed AAS.
• MQTT Broker: Routes event messages between event sources and subscribers.

4.3.2 Architecture and Message Flow

Event Publishing (AAS → MQTT Broker)

When an AAS detects a relevant change, it publishes an event message to an MQTT topic.

• The AAS EventElement is configured with:
o messageTopic: Defines the MQTT topic for the event.
o messageBroker: Specifies the broker address.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 21

o direction: OUT(Indicates an outgoing event).

Event Subscription (Subscriber → MQTT Broker)

A subscriber such as another AAS instance, is an AAS user application, or a monitoring system
subscribes to specific MQTT topics.

• The AAS EventElement is configured with:
o messageTopic: The same topic as the publisher.
o messageBroker: Address of the MQTT broker.

Event Transmission Workflow

1. AAS publishes an event to an MQTT topic.
2. MQTT broker forwards the message to all subscribers.
3. Subscribers process the event and react accordingly.

5 Generic Event Subscriptions Patterns in the AAS
5.1 Application of the Event Mechanism Across Multiple Use Cases

The event mechanism described here can be applied to a wide range of use cases. The most common
scenario, already introduced in Chapter 2.6, involves subscribing to an element within the AAS and
receiving a notification when that element is changed.

However, from the authors' perspective, there are additional generic use cases that are likely to occur
frequently in practice. One such case arises when a subscription targets a Submodel or another higher-
level structure element, and a different, yet associated, AAS element is changed or created. In other
words, instead of subscribing to each element individually, a client can subscribe to a parent element
and receive notifications about structural changes within its hierarchy. This scenario is further detailed
in Chapter 5.2.

Another relevant use case addresses notifications concerning structural changes at the AAS level itself.
In this variant, the entire AAS is subscribed to, and the subscriber is notified when, for example, a new
Submodel is created. This scenario is described in Chapter 5.3.

5.2 Generic Event Handling for Changes within Submodel Hierarchies

5.2.1 Explanation of the Subscription Pattern

In this chapter, an exemplary modeling scenario is described in which a subscription is made to a
specific SubmodelElement, and notifications are triggered when another, associated
SubmodelElement is created or updated.

To illustrate the concept, the modelling is based on the Product Change Notification (PCN) submodel
(IDTA, 2024). A central part of this submodel is a SubmodelElementList named Records, which contains
multiple entries, each representing a change record as a SubmodelElementCollection.

In the described use case, the client application subscribes to changes within a specific entry of the
record list (SubmodelElementList “Records”). Whenever a new record (i.e., a new instance of a
SubmodelElementCollection “Record_0001_”) is created and added to the list, the subscribing
application .receives a corresponding notification.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 22

Figure 18: UML class diagram for the use case

Figure 18 illustrates the relationships between the elements of the AAS that are involved in this
modelling case. The scenario is represented as a class diagram.

A Submodel called Product Change Notifications contains a SubmodelElementList named “Records”.
This list is the object of the subscription. To enable this, a BasicEventElement is created and attached
to the Submodel Product Change Notifications.

When the subscribed SubmodelElementList is updated, for example, by creating a new record, the
subscriber should be notified accordingly. Upon the occurrence of such an event, the subscriber
receives an EventPayload as part of the notification.

To properly understand the semantics of the received payload, it is not sufficient merely to indicate
that a new SubmodelElement was created. The modelling must also allow identifying where this
element belongs within the AAS structure, specifically:

• to which parent element it is linked, and
• to which Submodel it belongs.

This relationship must be clearly expressed through the modelling approach. Figure 19 deepens the
example by presenting an object diagram derived from the class diagram. The object diagram visualizes
the modelling with more concrete details, such as example attribute values that are essential for better
understanding the connections shown in Figure 18. For the sake of clarity, only a subset of attributes
is shown in the object diagram to exemplify the key aspects without overloading the representation.

The observed attribute of the BasicEventElement references the Referable of the subscribed
SubmodelElement, in this example, a SubmodelElementList. The hasSemantics attribute of the
BasicEventElement specifies the type of change that should trigger the notification. In this case, the
notification is issued when a new instance (e.g., Record_001) is created within the selected
SubmodelElementList. The semantic identifier used for this creation event has the following value:
https://www.AAS.io/Event/create.

Other attributes of the BasicEventElement are to be specified in accordance with the definitions
provided in Chapter 2.

https://www.aas.io/Event/create

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 23

Figure 19: Object diagram for the use case

The source attribute in the EventPayload contains the Referable of the associated BasicEventElement,
i.e., the path that uniquely identifies this EventElement within an AAS. The sourceSemanticId attribute
of the EventPayload corresponds exactly to the hasSemantics attribute of the BasicEventElement.

In contrast to the observed attribute of the EventElement, the observableReference attribute of the
EventPayload refers not to the monitored SubmodelElementList itself, but to the Referable of the
newly created instance, in this case, the SubmodelElementCollection Record_0001_.

The observableSemanticId contains the semantic ID of the created Record_0001_ element. The topic
attribute of the EventPayload carries the same value as the messageTopic attribute defined in the
BasicEventElement.

This use case is applicable to a wide range of practical implementations. A subsequent chapter outlines
potential application ideas, illustrating how the approach can be utilized with existing submodels and
in real-world usage scenarios.

5.2.2 Example Use Case: Automated firmware update notification using PCN submodel

A manufacturer relies on a supplier for a critical electronic component. The supplier releases a
firmware update for this component.

• The supplier’s AAS registers a product change by adding a new entry to the list of records
within the PCN Submodel.

• The new record contains details about the firmware update of a component, with the changes
represented through various SubmodelElements of the record.

• The PCN event element (PcnEventsOutgoing) continuously monitors the Submodel for newly
added change records.

• Upon detecting a new entry, the event is automatically triggered within the AAS.
• The event mechanism which is configured in the AAS itself pushes the new record’s

information to subscribed clients, ensuring that the manufacturer is promptly informed.
• The manufacturer retrieves the update details from the repository. Subsequently, the

production and quality teams adjust assembly and testing procedures to accommodate the
new firmware version.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 24

5.2.3 Example Use Case: Real-Time Temperature Monitoring with the Time Series Data
Submodel

The Time Series Submodel (IDTA, 2023) is primarily designed for the semantic representation and
integration of time-stamped data within the AAS. It organizes and stores time-series data using
internal, linked, or external segments depending on the requirements of the specific use case.

In a factory environment, temperature sensors are deployed to continuously monitor critical
equipment. Special attention is required when the temperature reaches defined threshold (e.g 90°C
or higher), as this may indicate abnormal or potentially hazardous conditions. These sensors are
modelled into the factory’s AAS and utilize the Time Series Data Submodel to systematically record
temperature readings along with their timestamps, enabling precise tracking and analysis over time.

• The temperature sensor monitors a machine and continuously records temperature values.
Each reading is stored in the Time Series Data Submodel, with corresponding timestamps to
form a structured historical log.

• A BasicEventElement is modeled within the same AAS and configured to observe the time
series records. Rather than triggering on every new reading, the EventElement is set up to
activate only when a critical condition is met, specifically, when a temperature value meets or
exceeds the defined threshold.

• Upon such a trigger, the EventElement generates an EventPayload containing the
temperature value and timestamp and sends this payload to a subscribed AAS user application
using the configured communication mechanism (e.g., HTTP or MQTT).

5.2.4 Example Use Case: Component replacement in the BOM

The Hierarchical Structures Enabling Bills of Materials (IDTA, 2024) provides a standardized and
structured approach to representing the composition and relationships of industrial assets. It allows
the hierarchical modelling of industrial equipment, covering components, subsystems, and complete
systems in an interoperable manner.

The BOM submodel contains the Entity elements EntryNode and Node (IDTA, 2024) represent different
levels within this hierarchy, enabling a structured breakdown of complex systems and are used to
define the components and subsystems within a hierarchical structure. An EventElement in the AAS
can be utilized to monitor and notify structural changes in the BoM. Whenever a new component is
added, modified, or removed the event mechanism can trigger an update that is pushed to relevant
AAS user systems.

In a modern conveyor system, various mechanical and electronic components such as sensors, rollers,
motors, pulleys, and idlers work together to enable continuous material movement.

• During routine operations or maintenance, a situation arises where a motor in the conveyor
system is replaced. The BoM Submodel is promptly updated to reflect the installation of the new
motor, including its serial number, vendor information and technical parameters.

• An EventElement within the AAS is configured to monitor the BoM Submodel for changes in its
structural composition or metadata. Once the new motor's data is updated, the EventElement
detects this structural change and triggers an event indicating that a component replacement has
occurred.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 25

5.3 Subscription to Structural Changes at AAS Level

5.3.1 Explanation of the Subscription Pattern

Figure 20: UML class diagram for the use case

Figure 20 illustrates an exemplary modelling of the scenario in which a subscription is configured to
monitor the addition of new Submodels to an Asset AAS. In this scenario, the observed attribute of the
BasicEventElement references the AAS ID of the monitored AAS. The hasSemantics attribute of the
BasicEventElement is set to: https://www.example.com/Event/Create.

The associated EventPayload is structured in the following way: the source attribute points to the
Referable of the corresponding BasicEventElement, providing a unique identification within the AAS.
The sourceSemanticId exactly matches the hasSemantics attribute of the BasicEventElement. The
observableReference attribute refers to the newly added Submodel, while the observableSemanticId
contains the semanticId of this newly created Submodel. The topic attribute adopts the same value as
the messageTopic attribute from the BasicEventElement.

Figure 21: UML object diagram for the use case

https://www.example.com/Event/Create

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 26

The payload of the event itself consists either of the completely new Submodel or a link to it,
depending on the implementation. To further clarify this modeling approach, Figure 20 first presents
a class diagram outlining the relationships at a generic level, followed by an object diagram (See Figure
21) that instantiates selected attributes.

5.3.2 Example Use Case: Procurement Workflow with PRN, PRR, and POC Submodels

Figure 22: Data Exchange during Procurement using PRN, PRR, and POC Submodels
(InterOpera, 2023)

A high-tech electronics manufacturer (client in the Figure 22) requires a custom circuit board from a
supplier for a new product. The client’s design department provides detailed CAD drawings and
specifications through the product’s AAS. The client’s purchasing department initiates the
procurement process by sending a PRN to potential suppliers. This is achieved using the PRN Submodel,
transmitted via the ERP system. Upon receiving the PRN, the supplier’s production planners assess
feasibility, plan resources, and calculate costs. They then prepare an offer using the PRR Submodel,
automatically populating a structured offer template. The offer is sent back to the client, who reviews
it, negotiates if needed, and awards the contract to the selected supplier. The final purchase order is
issued using the POC Submodel, consolidating the relevant data from the previous steps (InterOpera,
2023). The overall sequence of data exchange between the client and supplier AAS, including the use
of PRN, PRR, and POC Submodels is illustrated in Figure 22.

While the Submodels (PRN, PRR, POC) provide a structured representation of data and process stages,
they are inherently static — they describe what the data is, but not how and when processes should
move forward. This is where the event mechanism plays a role: Events dynamically connect process
stages by triggering actions automatically when changes occur in the AAS.

The event-driven automation within this procurement process works as follows:

• Event Handling in the PRN Process:

The creation of a PRN Submodel instance triggers an event that captures the relevant information and
packages it into an EventPayload. This payload is automatically transmitted to the ERP system, which
then forwards the PRN to potential suppliers. The event ensures that the necessary data from the
Submodel is accurately and promptly communicated without manual intervention.

• Event Handling in the PRR Process:

On the supplier side, an event element within the supplier’s AAS observes incoming PRN notifications.
This event can automatically trigger internal workflows such as:

ο notifying production planners,
ο informing warehouse management,
ο and providing all necessary data for feasibility assessment, resource planning, and cost

calculation.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 27

Once the offer is prepared, the supplier generates a PRR Submodel. The creation of the PRR triggers
another event, which automatically transmits the PRR back to the client’s system, ensuring seamless
and timely information flow between business partners.

• Event Handling in the POC Process:

After reviewing the PRR and completing any required negotiations, the client selects the supplier and
instantiates a POC Submodel. This action triggers a POC event, which automates the dispatch of the
finalized purchase order to the selected supplier, thus completing the procurement cycle.

6 Summary and Outloook
This document provides an initial explanation of the event mechanism within the AAS. It outlines
possible configurations, architectural variants, implementation technologies, and practical examples
using selected SubmodelElements. The goal is to initiate a broader discussion and offer guidance for
modelers who are currently evaluating possible applications of AAS eventing. Another secondary goal
is to evaluate the current specification of the BasicEventElement and EventPayload through the
illustrative and upcoming practical implementations, and to identify potential needs for adjustments
to the specification.

The presented concepts aim to support the community in understanding the potential of events in the
AAS context and how they can be leveraged to increase interoperability and responsiveness in digital
twin systems.

Future publications will address additional aspects in more detail, such as in-depth analyses of relevant
security considerations, further modelling examples, and implementation best practices. These will
also include contributions toward the evolution of the de facto standard AAS modelling frameworks,
enabling a broader and more systematic use of event mechanisms aligned with the specifications and
underlying architectural concepts.

If you are interested in contributing to this ongoing discussion and wish to actively participate in
shaping the future of event-driven AAS Modelling, we warmly invite you to get in touch with us.
Together, we can lay the foundation for a robust and sustainable semantic modelling approach using
the AAS.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 28

7 References
(IDTA), I. D. (April 2023). Specification of the Asset Administration Shell - Part 1: Metamodel. Retrieved

from https://industrialdigitaltwin.org/wp-content/uploads/2025/03/IDTA-01001-3-0-
2_SpecificationAssetAdministrationShell_Part1_Metamodel.pdf

IDTA. (2023). IDTA 02008-1-1: Time Series Data. Specification. Retrieved from
https://industrialdigitaltwin.org/wp-content/uploads/2023/03/IDTA-02008-1-
1_Submodel_TimeSeriesData.pdf

IDTA. (2024). IDTA 02011-1-1: Hierarchical Structures enabling Bills of Material. IDTA. Retrieved from
https://industrialdigitaltwin.org/wp-content/uploads/2024/06/IDTA-02011-1-
1_Submodel_HierarchicalStructuresEnablingBoM.pdf

IDTA. (2024). IDTA 02036-1-0: Product Change Notifications for industrial product types and items in
manufacturing. Frankfurt am Main: IDTA.

InterOpera. (2023). Purchase request Notification. Stuttgart: Steinbeis Innovation gGmbH.

Understanding AAS Events

Discussion Paper 05/2025 Version 1.0 29

C O N T A C T :
Industrial Digital Twin Association e. V.

Lyoner Straße 18

60528 Frankfurt am Main

Phone: +49 69 6603 1939

E-Mail: info@idtwin.org

	Contents
	List of Figures
	List of Abbreviations
	1 Introduction and Motivation
	2 Explanation of the specification of the AAS BasicEventElement
	2.1 General
	2.2 What exactly can be subscribed?
	2.3 Specification of the BasicEventElement
	2.4 Integration of the BasicEventElement in the AAS-Structure
	2.4.1 General
	2.4.2 Assigning the BasicEventElement directly to the existing Submodel
	2.4.3 Creation of the separate Submodel for Events

	2.5 Content of the Event – application of the metamodel for EventPayload
	2.6 Relation between BasicEventElement and EventPayload

	3 Generic Use Cases for the Application of Event Mechanism
	3.1 System Architecture
	3.2 Use Cases
	3.2.1 The external software application subscribes the updates of the AAS
	3.2.2 AAS subscribes the external Data Source
	3.2.3 One AAS subscribes the updates of another AAS

	4 Technological implementations
	4.1 General
	4.2 HTTP REST-Based Event Handling
	4.2.1 Key Attributes of AAS Events
	4.2.2 HTTP REST as a Transport Layer for AAS Events
	4.2.3 Push scenario in EventHandling using REST API
	4.2.4 Pull Scenario in Event Handling using REST API

	4.3 MQTT
	4.3.1 MQTT as a Transport Layer for AAS Events
	4.3.2 Architecture and Message Flow

	5 Generic Event Subscriptions Patterns in the AAS
	5.1 Application of the Event Mechanism Across Multiple Use Cases
	5.2 Generic Event Handling for Changes within Submodel Hierarchies
	5.2.1 Explanation of the Subscription Pattern
	5.2.2 Example Use Case: Automated firmware update notification using PCN submodel
	5.2.3 Example Use Case: Real-Time Temperature Monitoring with the Time Series Data Submodel
	5.2.4 Example Use Case: Component replacement in the BOM

	5.3 Subscription to Structural Changes at AAS Level
	5.3.1 Explanation of the Subscription Pattern
	5.3.2 Example Use Case: Procurement Workflow with PRN, PRR, and POC Submodels

	6 Summary and Outloook
	7 References

