B PLATTTFORM [] we I L
INDUSTRIEA4.0 .
ol " in cooperation with Die Elektroindustrie

SPECIFICATION
Detalls of the Asset

Administration Shell

Part 2 — Interoperability at Runtime —
Exchanging Information via Application
Programming Interfaces (version 1.0RC01)

Page 2 | Details of the Asset Administration Shell - Part 2
Imprint

Publisher

Federal Ministry for Economic Affairs
and Energy (BMWi)

Public Relations

10119 Berlin

www.bmwi.de

Text and editing
Plattform Industrie 4.0
Bertolt-Brecht-Platz 3
10117 Berlin

Design and production

The Plattform Industrie 4.0 secretariat, Berlin

Status
November 2020

Ilustrations

Plattform Industrie 4.0; Anna Salari, designed by freepik (Title)

Editorial notes | Page 3

Contents
L PFEAMDBIE .ot 7
11 EQITOMIAI NOTES ...ttt 8
1.2 SCOPE OF thiS DOCUMENTeeiiiiiiie ettt ettt et e et et e seesbesreere e e et e seeseesreaneeneas 8
13 Structure Of the DOCUMENTcviiriiirieees s 8
1.4 TermMS & DEFINITIONS ...o.viveiiieiiie et n e 8
15 ADDIEVIBLIONS ...ttt bbbt b et b bt r e r e 10
P 1111 (oo [FTod 1o o OO TSP ST PV PTSOPR PSP 12
KT €710 | TP TR TSP TR PV POPSPR PRSP 14
3.1 Services, Interfaces and Interface OPEratioNScvoveierieriiiie st 15
3.2 DESIGN PRINCIPIES ...ttt bbbt bbb bbbt 16
3.3 Semantic References fOr OPEratiONScviieiieiie et sae e e nre e 17
34 RETEIENCES ANU KBYS ... viiiee ittt e e st e et et e ere e ase e s te e be e beesteasaesreesreesreenneeneas 18
3.5] LeTo s L o=V U0 1] (=T RS S 19
4 Interfaces Asset AdMINIStration Shell...........coo i 20
4.1 GBINETAL ...ttt nn 21
4.2 Asset Administration Shell Interface and OPErationscocoviireiiiieneiine e 21
421 Interface Asset Administration Shell..........cocooiiiiiii e 21
422 Operation GetAssetAdMINIStratioNShell ..o 21
4.2.3 Operation PUtASsetAdmMINIStrationShell..........cooiiiiiiii e, 22
4.2.4 Operation PatchAssetAdMINIStrationShell ..., 22
425 Operation PUtSUDMOUEIRETEIENCEc.vveeieciee e 23
4.2.6 Operation RemoveSUbMOdeIRETEIENCEcoviieeie e 23
4.3 Submodel Interface and OPEIatiONSceccuiiiiiiieiie et sae b e s e sre e 24
431 Interface SUDMOGEL...........cv i 24
4.3.2 Operation GEtSUDMOUEN ... s eneas 25
4.3.3 Operation GetAlISUDMOTEIEIEMENLSceiiiiiiiiieie e 25
434 Operation GetAllSubmodelElementsByParentPathAndSemanticld............ccocooeviiiniicienecnen, 26
435 Operation GetAllSubmodelElementsBySemanticld............ccooooeiieneiiieneineeeeeeeee, 26
4.3.6 Operation GetSUbmOodelEIemMENtBYPALhcociiiiiiiiniee e 27
4.3.7 Operation PutSubmodelEIementBYPath............ccooiiiiiiiieieee e 27
4.3.8 Operation SetSubmodelElementValueByPath ... 28

Page 4 | Details of the Asset Administration Shell - Part 2

4.3.9 Operation DeleteSubmodelElementByPath............ccoeiiiiiiiinieeeee e, 28
4.3.10 Operation INVOKEOPErAtIONSYNCc.veviiviieiiiierieie sttt 29
4311 Operation INVOKEOPErAtIONASYINCc.civiieiiiierieieite ettt sttt sn s 30
4.3.12 Operation GetOperatioNASYNCRESUILcciiiiee e enes 30
4.4 Asset Administration Shell Serialization Interface and Operationsccccceevvveveieereiesesieseseeneans 31
441 Interface Asset Administration Shell Serialization...........c.cocoorieiiniiniei e 31
4.4.2 OPEIAtION GEIAASX ...oiie ittt e et st st e st e et e e et e besbesbeereese e e et e neenrentenneaneas 31
4.4.3 Operation GetSerializatioNBYIAS...........ccciviiiieiieiere e eneas 32

5 Interfaces RegisStration ANd LOOKUPccveirtiiiirtiiieisiesieisteee bbbt 33
5.1 GBINETAL ...ttt b bbb bbb bR e bbb bt b ettt b et 34
5.2 Asset Administration Shell Registry Interface and Operations...........ccccveveviriiiineiseneiese e 34
521 Interface Asset Administration Shell REGISIIYccooviiiiiiiiiiinee e 34
522 Operation GetAllAssetAdministrationShellDesCriptors.........cooviiereiiienciinenee e, 34
5.2.3 Operation GetAssetAdministrationShellDescriptorByldcccccovevviieiie i v 35
5.2.4 Operation PutAssetAdministrationShellDeSCHPLOrcoovvviierieiiecece e 35
5.25 Operation DeleteAssetAdministrationShellDescriptorByld..........cccocovevvvieiiivicieece e 36
5.3 Submodel Registry Interface and OPerations...........cccccvevviieiiieiiese s 36
5.3.1 Interface SUDMOUEI REGISIIYcoiiieieiie e et baenbe e e 36
5.3.2 Operation GetAlISUDMOUEIDESCIIPLOIS.cviviieiiiteiieerie ettt e 36
533 Operation GetSubmodelDesCriptorBY1dcocviiieiiiieieree e 37
534 Operation PUtSUDMOUEIDESCIIPIONciiiiiiiieriei et 37
5.35 Operation DeleteSUbmodelDesCriptorBY1d..........ccoooviiiiiiiieeieeee e 38

B INLErTACES REPOSITONYeiiiitiiiiiitit e b bbbkt b et b et b e b b 39
6.1 GBINETAL ...ttt n 40
6.2 Asset Administration Shell Repository Interface and Operations..........c.ccoceveveeeeecieiiesesiee e 40
6.2.1 Interface Asset Administration Shell REPOSITOrYcccoccvviieiiiiiiie e 40
6.2.2 Operation GetAllAssetAdMINIStratioNShellS..........ooo oo 40
6.2.3 Operation GetAssetAdministrationShellBYId ... 41
6.2.4 Operation GetAllAssetAdministrationShellSBYASSEtIdcccooviiriiiineiiiereeee e, 41
6.2.5 Operation GetAllAssetAdministrationShellsSByldShOrtc.cooiiieiiiiniiieeeee e, 42
6.2.6 Operation PUtAssetAdmMINIStrationShell.........ccoooiiiiiiii e, 42
6.2.7 Operation Delete AssetAdministrationShellBYId............coooiiiniiiieniiieceee e, 43
6.3 Submodel Repository Interface and OPErations...........cocereirireienereie e 43
6.3.1 Interface SUDMOAE] REPOSITONYc.eiiiiiiiiiiie e e 43

Editorial notes | Page 5

6.3.2 Operation GetAIISUDMOUEIScoeiiiiiiiiiie e 44
6.3.3 Operation GetSUDMOUEIBY Iccoiiiiiiie e 44
6.3.4 Operation GetAlISUbmodelsBYSemantiCld............ccoeiieriiiieneiieree e 45
6.3.5 Operation GetAlISUbMOdelSBYIASHOIT.........cociviiee e 45
6.3.6 Operation PULSUDMOUEL..........ccviiece et e e e eneas 46
6.3.7 Operation DeleteSUBMOEIBYId...........ccooiiiiiiicce e ene s 46

7 Interfaces PUBIiSh @Nd DISCOVEIYcoiiiiiiieiiieie e ste e ste et sttt e e st e besresteere e e e eesresresneenaenes 48
7.1 GENBIAL ...ttt 49
7.2 Asset Administration Shell Basic Discovery Interface and Operationscccoevereeneiienencennns 49
721 Interface Asset Administration Shell BasiC DISCOVETYccoeiiiriiiineiisinieeseneeeie e 49
7.2.2 Operation GetAllAssetAdministrationShellldSBYASSEtIdcccooviiieniiineneinecc e, 49
7.2.3 OPEration PULASSELIToveiiiieieee bbbt 50
7.3 Submodel Discovery Basic Interface and OPerationsccoceoeirereiineneienenee e 51
7.3.1 Interface SUDMOUEI DISCOVEIYc.vviiiiiiecie ettt sttt e st e baesbeeaennne s 51
7.3.2 Operation GetSubmodelldsBySemanticldcccccvovviiiiiiiie e 51

8 Interfaces CoNCePt DESCIIPLIONS ACCESS ...cvuiiveeiieerieeieetestesteesteesteesteeaesseesreesteesteesteanseaseesssesseesseesseeeesseens 52
8.1 GBINETAL ...ttt nn 53
8.2 Concept Description Repository Interface and Operations...........cccevvvevvereeiesiesiee s ese e 53
821 Interface Concept DesCription REPOSIIOIYcviviriiiirieiiereeeie ettt 53
8.2.2 Operation GetAlICONCEPIDESCIIPLIONSciiieieieiteiieie et 53
8.2.3 Operation GetConceptDesCriptioNBY1d..........ccoooviiiiiiiiee e 54
8.24 Operation GetAllConceptDescriptionsBYIASNOrt ..o, 55
8.2.5 Operation GetAllConceptDescriptionsBYISCaseOf ..., 55
8.2.6 Operation GetAllConceptDescriptionsWithDataSpecificationReferencec..cccocvecvvevenne, 56
8.2.7 Operation PUtCONCEPEDESCIIPLIONcviiii ettt st ne e 56
8.2.8 Operation DeleteConceptDescriptionById...........cooviiiiii i 57

LS D L - B Y o T-T o] g o= 1Y [0 o [OOSR 58
9.1 GBINETAL ...t h et E Rt b ettt 59
9.2 Metamodel Specification Details: DESIGNALOISciriiiiriieirie et 59
921 AssetAdMINIStratioNSHEIIDESCIIPLONveviiiieiite et 59
9.2.2 SUDMOUEIDESCIIPION ...ttt ettt st bbb ne e 60
9.2.3 ENAPOINT ..ot bbbttt 60
9.24 Status Code, Error Handling & ReSUlt MESSAQEScvoverieiiirieiienecsie e, 61

10 Base OPEration ParGIMELEISc.iiui ittt sttt sttt et b e bt bt e st e e et e besbesbesbeebees e e b enbesaesbesbeaneas 63

Page 6 | Details of the Asset Administration Shell - Part 2

L0.1 GBNEIAL ...ttt bbbt bbbt b bbb R bRt b b et b et r s 64
10.2 OutputMOdIfier iN OPEIALIONScceiveiiteieetecte ettt bbbttt e 64
10.3 Serialization in Specified Formats (Output MOIier).........cccoereiiiiiiiieeee e, 65
10.3.1 GNEIAL ... 65
10.3.2 Serialization in JSON ValUeS FOMMAL...........cccerrreiiiriiireeeseenesre e 65

10.4 SearchOptions USed iN OPEratiONSc.cceruerueiieiiseseeieiiesieseesiesesseseessesaesrestessessesseensesseseessessessenses 71
11 SUMMArY aNd OULIOOKecuiiiiiicic et e e e s e e s ae s teene e s e et e naeseesresreaneas 72
Annex A. Templates Used for SPeCIfiCation.........c.coeveiiiiiiiieie e 75
Annex B. Legend for UML MOGEITINGccoiiiiiiiiieiiieereee et 79
i. OMG UML GENEIAL ...ttt bbb et bbb bbb bbb ettt e e nnns 79

ii. Notes to Graphical REPIrESENTALION.coviiiiiiirieicir bbb 83

ANNEX C. BiIDIIOGIaPNY ..ot b bbb 87

1 Preamble

Page 8 | Details of the Asset Administration Shell - Part 2

1.1 Editorial notes

This document was developed from December 2019 to November 2020 by the sub working groups “Asset
Administration Shell” and “Infrastructure of the Asset Administration Shell” of the Platform Industrie 4.0 Working
Group “Reference Architectures, Standards and Norms*.

This documents is part 2 of the document series “Details of the Asset Administration Shell” [1].

For better readability, in compound terms the abbreviation "14.0" is consistently used for "Industrie 4.0". Used on its
own "Industrie 4.0" continues to be used.

This specification is versioned using Semantic Versioning 2.0.0 and follows the semver specification [4].

1.2Scope of this Document

This document specifies the interfaces as well as the APIs in selected technologies for the Asset Administration
Shells and its submodels.

Note: In this first version of the document no technology specific mappings are yet included.

1.3 Structure of the Document

The technology neutral specification of the interfaces of the Asset Administration Shell can be found in Clause 4 to
Clause 10. General topics are discussed in the Clause before, in Clause 3.

In the Annex the tables used to specify operations and interfaces are explained. Additionally, the UML notation used
is presented.

1.4Terms & Definitions

Forward notice

Definition of terms are only valid in a certain context. The current glossary applies to the context of this
document. Definitions already defined in Part 1 ([3]) are only repeated if they are essential for this
document.

asset administration shell (AAS)

standardized digital representation of the asset

Note 1 to entry: Asset Administration Shell and Administration Shell are used synonymously.

Note 2: Each administration shell can contain one or multiple sub models

Note 3: The administration shell can be passive, re-active, or pro-active

Note 4: The administration shell exists within one phase or across different phases of the lifecycle.
Note 5: Assets are part of an 14.0 component in an 4.0 system

- [SOURCE: Glossary Industrie 4.0]

interface

defined connection point of a functional unit which can be connected to other functional units

Note 1: “Defined” means that the requirements and the assured properties of this connection point are
described.

https://semver.org/spec/v2.0.0.html

Terms & Definitions | Page 9

Note 2: The connection between the interfaces of function units is also called an interface.
Note 3: In an information system, the defined exchange of information takes place at this point.
Note 4: Interface places certain requirements on the connection that is to be made.

Note 5: Interface demands certain features.

[Source: Glossary Industrie 4.0

DUDEN (modified)

ISO/IEC 13066-1:2011(en), 2.15 (modified)
DIN EN 60870-5-6:2009-11 (modified)

DIN IEC 60625-1:1981-05 (modified)]

operation

executable realization of a function
Note 1 to entry: The term method is synonym to operation in the IT domain

Note 2 to entry: an operation has a name and a list of parameters [ISO 19119:2005, 4.1.3]

[SOURCE: Glossary Industrie 4.0 (work in progress)]

service
Demarcated scope of functionality which is offered by an entity or organization via interfaces

Note 1 to entry: One or multiple operations can be assigned to one service

[SOURCE: Glossary Industrie 4.0]

submodel

model that is technically separated from another sub model and that is included in the asset administration shell

Note 1: Each submodel refers to a well-defined domain or subject matter. Submodels can become standardized
and thus become submodel templates.

Note 2: Submodels can have different life cycles.

Note 3: The concept of template and instance applies to submodels.

- [SOURCE: Glossary Industrie 4.0 (work in progress)]

submodel element

element suitable for the description and differentiation of assets

Note 1 to entry: extends the definition of properties
Note 2 to entry: could describe operations, relationships, and files

- SOURCE: Glossary Industrie 4.0 (work in progress)]

https://www.plattform-i40.de/PI40/Redaktion/EN/Glossary/E/entity_glossary.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Glossary/I/interface_glossary.html

Page 10 | Details of the Asset Administration Shell - Part 2

1.5 Abbreviations

Abbreviation Description

AAS Asset Administration Shell

AASX Package file format for the AAS

AML AutomationML

API Application Programming Interface

BITKOM Eu\r;.desverband Informationswirtschaft, Telekommunikation und neue Medien
BLOB Binary Large Object

CDD Common Data Dictionary

GUID Globally unique identifier

14.0 Industrie 4.0

ID Identifier

IEC International Electrotechnical Commission
IRDI International Registration Data Identifier

ISO International Organization for Standardization
JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OPC Open Packaging Conventions (ECMA-376, ISO/IEC 29500-2)
OPC Open Platform Communications

OPCF OPC Foundation

OPC UA OPC Unified Architecture

PDF Portable Document Format

RAMI4.0 Reference Architecture Model Industrie 4.0
RDF Resource Description Framework

REST Representational State Transfer

RFC Request for Comment

ROA Ressource Oriented Architecture

SOA Service Oriented Architecture

UML Unified Modeling Language

URI, URL, URN | Uniform Resource Identifier, Locator, Name

Abbreviations | Page 11

Abbreviation Description

VDI Verein Deutscher Ingenieure e.V.

VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V.
VDMA Verband Deutscher Maschinen- und Anlagenbau e.V.

W3C World Wide Web Consortium

XML eXtensible Markup Language

ZIP archive file format that supports lossless data compression

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e. V.

2 Introduction

Abbreviations | Page 13

In this document APIs for enabling the access to the information an Asset Administration Shell provides are defined.
The underlying information model is as defined in [2].

Since an API can be specified in different technologies like http/REST, MQTT and OPC UA the specification offers
a technology neutral specification of the interfaces.

In this version of the specification this technology neutral specification of the interfaces is defined.

Whereas in part 1 of the specification series of the Asset Administration Shell ([2]) it was mainly file exchange that
was considered it is the API that allows online access to information provided by the AAS that is subject of this
specification (see Figure 1).

Figure 1 Types of Information Exchange via Asset Administration Shells

1 2/

file exchange API

©

—

14.0language

< =

© Plattform Industrie 4.0

3 General

Services, Interfaces and Interface Operations | Page 15

3.1Services, Interfaces and Interface Operations

For this document the Industrie 4.0 Service illustrated in Figure 2 is used for a uniform understanding and naming. It
basically distinguishes between associated concepts on several levels (from left to right):

technology-neutral level: concepts that are independent from selected technologies.

technology-specific level: concepts that are instantiated for a given technology and/or architectural style

(e.g. http/REST, OPC UA, MQTT)

implementation level: concepts that are related to an implementation architecture that comprises one or

more technologies (e. g. C#, C++, Java, Python)

runtime level: concepts that are related to identifiable components in an operational Industrie 4.0 system.

The concepts that are dealt with in this document are those of the technology-neutral and technology-specific level.
However, in order to avoid terminological and conceptual misunderstandings, the whole Industrie 4.0 service model
is provided here.

The technology-neutral level comprises the following concepts:

Service: A service describes a demarcated scope of functionality (including its informational and non-
functional aspects), which is offered by an entity or organization via interfaces.

Interface: This is the most important concept as it is understood to be the unit of reusability across services
and the unit of standardization when being mapped to application programming interfaces (API) in the
technology-specific level. One interface may be mapped to several APIs depending on the technology and
architectural style being used, e.g. http/REST or OPC UA, whereby these API mappings also need to be
standardized for the sake of interoperability.

Interface-Operation: An interface is specified by means of interface operations according to specified
interaction policies and patterns.

The technology-specific level comprises the following concepts:

Service Specification: specification of a service according to the notation, architectural style and constraints
of a selected technology. Among others, it comprises and refers to the list of APIs that forms this service
specification. These may be 14.0-defined standard APIs but also other, proprietary APIs.

o Note: Such a technology-specific service specification may but not need to be derived from the
“service” described in the technology-neutral form. It is up to the system architect and service
engineer to tailor the technology-specific service according to the needs of the use cases to be
supported.

API (Application programming Interface): Specification of the set of operations and events that forms an
API in a selected technology. It is derived from the interface description on the technology-neutral level.
Hence, if there are several selected technologies, one interface may be mapped to several APIs.
API-Operation: specification of the operations (procedures) that may be called through an API. It is derived
from the interface operation description on the technology-neutral level. Hence, if there are several selected
technologies, one interface operation may be mapped to several API-operations.

The implementation level comprises the following concepts:

Service-Implementation: service realized in a selected implementation language following the specification
in the Service Specification description on the technology-specific level.

API-Implementation: set of operations realized in a selected implementation language following the
specification in the API description on the technology-specific level.

API-Operation-Implementation: concrete realization of an operation in a selected implementation language
following the specification in the API-Operation description on the technology-specific level.

https://www.plattform-i40.de/PI40/Redaktion/EN/Glossary/I/interface_glossary.html

Page 16 | Details of the Asset Administration Shell - Part 2

The runtime level comprises the following concepts:

e Service-Instance: instance of a Service-Implementation including its API-Instances for the communication.
Additionally, it has an identifier to be identifiable within a given context.

e API-Instance: instance of an API-Implementation which has an endpoint to get the information about this
instance and the related operations.

e API-Operation-Instance: instance of an API-Operation-Implementation which has an endpoint to get
invoked.

Figure 2 Services, Interfaces & APIs and Operations

class 14.0 Service Model
technology neutral technology specific implementation runtime
Service Service- Service- Service-
—_— -] I . S IS B
Specification realien Implementation retantiaten Instance

Interface API-Instance
; " eie| | Implementation [Tl
0+
1.*
Interface- ‘ API-Operation API-Operation- API-Operation-
Operation | o B I Implementation [~ o Instance
realize:

Scope of standardization such that compliance statements
may be formulated for the related specifications

One important take-away message from the Industrie 4.0 Service Model is that it is the level of the interface
(mapped to technology-specific APIs) that

e provides the unit of reusability,
e s the foundation for interoperable services, and
e provides the reference unit for compliance statements.

Therefore, in this document in Clause 3.5 the Interfaces and Operations which are needed for interaction regarding
the elements of the Asset Administration Shell meta model are defined. Mappings to specific technologies are not
part of this document yet but will be part in a following version.

3.2 Design Principles

The operations of the interfaces follow a resource-oriented approach which is close to general REST principles but
not as strict in every situation. The approach consists of the three main agreements:

e Stateless
The API is stateless. Each operation is independent. After each operation the server is always consistent.

Semantic References for Operations | Page 17

e Resources (Nouns)
Each resource is a clearly defined noun. This means that it has a specific name and the relation to other
nouns is defined. The nouns and the relationships between them are taken from the list of referable objects
of “Details of the Asset Administration Shell Partl” and their relationships. Additionally, there will be a list
of resources defined in Clause 9.

e Methods (Verbs)
A small set of standard methods which are GET, GETALL, PUT and DELETE is used to describe the
semantic of the most common operations. There are only a few exceptions for methods which are high
effort to do by standard methods or for situations where the standard methods do not fit (e.g. SET,
REMOVE).

The standard methods are:

o GET
A GET returns a single resource based on the resource identifier which is the identifier ([2]) for
identifiables and the idShort for referables.

e GETALL
Returns a list of resources based on optional available parameters such as filters.
e PUT

Creates a resource if it does not exist or updates an existing one. The identifier of the resource is not created
by the server, it will be part of the resource description. This is necessary because the id of identifiables is
globally unique and should be the identifier for the object in every system. This leads to the point that the
creation of an Identifiable is idempotent. There shall never be more than one Identifiable with the same 1D
in one System. If you try for example to put the same AAS object twice it will not create two AAS
resources.

e DELETE
Deletes a resource based on a given identifier.

3.3 Semantic References for Operations

The Operations of this document need unique identifiers to reach a common understanding and allow all involved
parties to reference the same things. These identifiers need to be globally unique and understandable by the
community and implementing systems. Furthermore, the identifiers need to support a versioning scheme for future
updates and extensions of the metamodel. The identifiers defined in this document are reused in related resources,
for instance protocol bindings of the presented operations or in self-descriptions of implementing services.

Internationalized Resource ldentifiers (IRIs), Uniform Resource Identifiers (URIs) [6] in particular, and the
requirements of DIN SPEC 91406, serve as the basic format. Further design decisions include ‘https’ as the URI
scheme, and the controlled domain name ‘admin-shell.io’ as the chosen authority. Both decisions guarantee the
interoperability of the identifiers and their durability, as URIs in general are well-known and proven and the
mentioned domain is controlled and served through the Plattform Industrie 4.0. All identifiers included in the
‘admin-shell.io” domain are further described in a lightweight catalogue in the form of markdown documents and
continuously maintained and updated®. The catalogue itself is further structured in several sub-namespaces specified
by the first path parameter. All URIs of this document reflect entities of the core metamodel, which are contained in
the sub-namespace identified with the ‘/aas’ path.

The thereby described identifiers appear mainly in the semanticld field of every class and operation. They are
needed as the class name is not necessarily constant over time. The respective semanticlds however guarantee the

L https://github.com/admin-shell-io/id

https://github.com/admin-shell-io/id

Page 18 | Details of the Asset Administration Shell - Part 2

unique and certain relation between a reference and the referenced class or operation. The URIs ids is as follows
(compare to Clause Semantic Identifiers for Metamodel and Data Specifications in Part 1 [2]).

Note: Version information is explicitly included in each identifier.
Note: Even though the usage of the ‘https’ scheme might indicate URLs, all identifiers are regarded as URIs look
ups and dereferencing them cannot be expected.

The following grammar is used to create valid identifiers:
<Identifier> ::= <Namespace>'/aas/API/'<idShortPath>'/'<Version>

<Namespace> ::= 'https://admin-shell.io/'

<idShortPath> ::= <idShort>('/'<idShortPath>)?
<idShort> = <Character>+

<Version> t:= <Digit>+'/'<Digit>+['/'<Character>+]
<Digit> ::=@0 | 1]2]|3]|]4|]5]|]6]7]8]29

<Character> ::= an unreserved character permitted by DIN SPEC 91406

? ::= zero or one

+ .= one or more

Rule: To reference a single operation the operationName is added in field <idShortPath>.

Examples for valid identifiers:

— https://admin-shell.io/aas/AP1/GetSubmodel/1/23
— https://admin-shell.io/aas/AP1/GetAllISubmodelElements/1/0/RCO1

Examples:
— https://admin-shell.io/aas/AP1/GetSubmodel/1/0/RC0O1
Examples for invalid identifiers:

— http://admin-shell.io/AP1/GetSubmodel/1/0
The scheme is different to ‘https’, and the ‘aas’ path segment is missing
— https://admin-shell.io/aas/AP1/GetSubmodel
No version information is included.
— https://admin-shell.io/aas/AP1/GetSubmodel/1/0#0173-%20ABC#001
The URI includes DIN SPEC 91406-reserved (#) and not permitted (%) characters.

3.4 References and Keys
In part 1 ([1]) of the series Asset Administration Shell in Detail the concept of Reference is introduced.

When defining interfaces, we distinguish between relative references and absolute references.

Special Parameters | Page 19

Absolute references require a global unique id as starting point of the reference to be resolvable. In this case the type
“Reference” is used.

Relative references do not start with a global unique id but assume that the context is given and unique. Then the
key list only contains keys with Key/idType== IdShort and a Key/type that references a non-identifiable referable
(e.g. a Property, a Range, a RelationshipElement etc.). For relative references the data type “Key[<cardinality>] is

used, e.g. Key[1..*].

3.5Special Parameters

Special Parameters used for consistency throughout the document are described in the following table.

Parameter

Key[] path

Description

IdShort-Path via relative Reference/Keys to a submodel element

OperationHandle

The returned handle of an operation’s asynchronous invocation used to request the current

state of the operation’s execution

OperationResult

The returned result of an operation’s invocation

OutputModifier

Determines the result format filtering of the response

SearchOptions

Determines the search options of the search space, e.g. the depth

SerializationFormat

Determines the format of serialization, i.e. JSON, XML, RDF, AML, etc.

ShellDescriptor

Object containing the Asset Administration Shell’s identification and endpoint
information

SubmodelDescriptor

Object containing the Submodel’s identification and endpoint information

Key

The key name of the specific asset identifier (IdentifierKeyValuePair/key) or the
predefined key “globalAssetld” that would refer to the AssetIinformation/globalAssetld.

KeyType

Key type.
Mandatory for global asset id (corresponds to Identifier/idType)

semanticld

Identifier of the semantic definition

4 Interfaces Asset Administration Shell

General | Page 21

4.1 General
These interfaces allow to access the elements of administration shells or submodels.

Sometimes, these kinds of services are also classified as contextualization and classification services.

4.2 Asset Administration Shell Interface and Operations

N

.2.1 Interface Asset Administration Shell

Operation Name Description

GetAssetAdministrationShell Returns the Asset Administration Shell

PutAssetAdministrationShell Updates the current Asset Administration Shell
PatchAssetAdministrationShell ~ Adds or updates additional elements to the Asset Administration Shell
PutSubmodelReference Creates or updates a Submodel Reference at the Asset Administration Shell

RemoveSubmodelReference Removes a specific Submodel Reference from the Asset Administration Shell

4.2.2 Operation GetAssetAdministrationShell

OJLICUGINNEINEE GetAssetAdministrationShell
Explanation Returns the Asset Administration Shell

semanticld https://fadmin-shell.io/aas/AP1/GetAssetAdministrationShell/1/0/RC01

outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload AssetAdministrationShell Requested Asset Administration Shell

Page 22| Details of the Asset Administration Shell - Part 2

4.2.3 Operation PutAssetAdministrationShell

O I INNEINEIN PutAssetAdministrationShell
Explanation Updates the Asset Administration Shell

semanticld https://admin-shell.io/aas/API/PutAssetAdministrationShell/1/0/RC01

aas AssetAdministrationShell Asset Administration Shell object

statusCode StatusCode Status code

payload AssetAdministrationShell Updated Asset Administration Shell

4.2.4 Operation PatchAssetAdministrationShell

OJ LI UINNEINEE PatchAssetAdministrationShell
Explanation Adds or updates additional elements to the Asset Administration Shell

semanticld https://fadmin-shell.io/aas/AP1/PatchAssetAdministrationShell/1/0/RCO1

aas AssetAdministrationShell Asset Administration Shell object

statusCode StatusCode Status code

payload AssetAdministrationShell Updated Asset Administration Shell

Asset Administration Shell Interface and Operations | Page 23

4.2.5 Operation PutSubmodelReference

OJ Ul IMNEINEI PutSubmodelReference
Explanation Creates or updates a Submodel Reference at the Asset Administration Shell

semanticld https://admin-shell.io/aas/API/PutSubmodelReference/1/0/RCO1

submodelRef Reference Reference to the Submodel

statusCode StatusCode Status code

payload Reference Created Submodel Reference

4.2.6 Operation RemoveSubmodelReference

OJLICUINNEINEE RemoveSubmodelReference
Explanation Removes the Submodel Reference from the Asset Administration Shell

semanticld https://admin-shell.io/aas/API/RemoveSubmodelReference/1/0/RCO1

submodelRef Reference Reference to the Submodel

statusCode StatusCode Status code

Page 24 | Details of the Asset Administration Shell - Part 2

4.3 Submodel Interface and Operations

4.3.1 Interface Submodel

GetSubmodel Returns the Submodel
GetAllSubmodelElements Returns all submodel elements including their hierarchy

GetAllSubmodelElementsByParentPathAndSemanticld Returns all submodel elements of the Submodel or of the
parent submodel element with a specific Semantic-Id

GetAllSubmodelElementsBySemanticld Returns all submodel elements from a Submodel with a
specific Semantic-1d

GetSubmodelElementByPath Returns a specific submodel element from the Submodel
at a specified path

PutSubmodelElementByPath Creates a new or updates an existing submodel element
at a specified path within the submodel elements
hierarchy

SetSubmodelElementValueByPath Sets the value of the submodel element at a specified
path according to the protocol-specific RAW-value
payload

DeleteSubmodelElementByPath Deletes a submodel element at a specified path within
submodel elements hierarchy

InvokeOperationSync Synchronously invokes an Operation at a specified path
with a client timeout in ms

InvokeOperationAsync Asynchronously invokes an Operation at a specified path
with a client timeout in ms

GetOperationAsyncResult Returns the OperationResult of an asynchronously
invoked operation

Submodel Interface and Operations | Page 25

4.3.2 Operation GetSubmodel

O Il INNEINEI GetSubmodel
Explanation Returns the Submodel

semanticld https://admin-shell.io/aas/AP1/GetSubmodel/1/0/RCO1

outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload Submodel Requested Submodel

4.3.3 Operation GetAllSubmodelElements

OJ LICUINNEINEI GetAllSubmodelElements
Explanation Returns all submodel elements including their hierarchy

semanticld https://fadmin-shell.io/aas/AP1/GetAllISubmodelElements/1/0/RCO1

searchOptions SearchOptions Determines the search options of the search space, e.g. the
depth
outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload SubmodelElement[0..*] Requested submodel elements

Page 26 | Details of the Asset Administration Shell - Part 2

4.3.4 Operation GetAllSubmodelElementsByParentPathAndSemanticld

GetAllSubmodelElementsByParentPathAndSemanticld

Explanation Returns all submodel elements of the Submodel or of the parent submodel element with a
specific Semantic-Id

semanticld https://admin-
shell.io/aas/AP1/GetAllSubmodelElementsByParentPathAndSemanticld/1/0/RCO1

parentPath Key[1..*] IdShort-Path via relative Reference/Keys to a submodel
element

semanticld Reference Identifier of the semantic definition

outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload SubmodelElement[0..*] Requested Submodel Elements

4.3.5 Operation GetAllSubmodelElementsBySemanticld

OIS INNEINEI GetAllSubmodelElementsBySemanticld
Explanation Returns all submodel elements from a Submodel with a specific Semantic-1d

semanticld https://admin-shell.io/aas/AP1/GetAllISubmodelElementsBySemanticld/1/0/RCO1

semanticld Reference Identifier of the semantic definition
searchOptions SearchOptions Determines the search options of the search space, e.g. the
depth

outputModifier ~ OutputModifier Determines the result format filtering of the response

Submodel Interface and Operations | Page 27

OI I IMNEINEI GetAllSubmodelElementsBySemanticld

statusCode StatusCode Status code

payload SubmodelElement[0..*] Requested Submodel Elements

4.3.6 Operation GetSubmodelElementByPath

OJLICUOIBNNEINEE GetSubmodelElementByPath
Explanation Returns a specific submodel element from the Submodel at a specified path

semanticld https://admin-shell.io/aas/APl/GetSubmodelElementByPath/1/0/RC01

path Key[1..*] IdShort-Path via relative Reference/Keys to a submodel
element
outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload SubmodelElement Requested submodel element

4.3.7 Operation PutSubmodelElementByPath

Operation Name PutSubmodelElementByPath

Explanation Creates a new or updates an existing submodel element at a specified path within submodel
elements hierarchy

semanticld https://admin-shell.io/aas/AP1/PutSubmodelElementByPath/1/0/RC01

Page 28 | Details of the Asset Administration Shell - Part 2

PutSubmodelElementByPath

path Key[1..*] IdShort-Path via relative Reference/Keys to a submodel
element

submodelElement SubmodelElement Submodel element object

statusCode StatusCode Status code

payload SubmodelElement Created or updated submodel element

4.3.8 Operation SetSubmodelElementValueByPath

SetSubmodelElementValueByPath

Explanation Sets the value of the submodel element at a specified path according to the protocol-specific
RAW-value payload

semanticld https://admin-shell.io/aas/AP1/SetSubmodelElementValueByPath/1/0/RC01

path Key[1..*] IdShort-Path via relative Reference/Keys to a submodel
element
payload anyType The new value of the submodel element to be set

statusCode StatusCode Status code

4.3.9 Operation DeleteSubmodelElementByPath

OJ LICULINNEINEE DeleteSubmodelElementByPath
Explanation Deletes a submodel element at a specified path within the submodel elements hierarchy

semanticld https://admin-shell.io/aas/APl/DeleteSubmodelElementByPath/1/0/RC01

Submodel Interface and Operations | Page 29

OJ U INNEINEI DeleteSubmodelElementByPath

path Key[1..*] IdShort-Path via relative Reference/Keys to a submodel
element

statusCode StatusCode Status code

4.3.10 Operation InvokeOperationSync

Operation Name InvokeOperationSync
Explanation Synchronously invokes an Operation at a specified path with a client timeout in ms

semanticld https://admin-shell.io/aas/APl/InvokeOperationSync/1/0/RC01

path Key[1..*] IdShort-Path via relative Reference/Keys to a submodel
element, in this case an operation

inputArgument OperationVariable[0..*] Input argument
inoutputArgument OperationVariable[0..*] Inoutput argument
timeout nonNegativelnteger Client timeout

statusCode StatusCode Status code

payload OperationResult Operation Result

Page 30 | Details of the Asset Administration Shell - Part 2

4.3.11 Operation InvokeOperationAsync

Operation Name InvokeOperationAsync
Explanation Asynchronously invokes an Operation at a specified path with a client timeout in ms

semanticld https://fadmin-shell.io/aas/AP1/InvokeOperationAsync/1/0/RC01

path Key[1..*] IdShort-Path via relative Reference/Keys to a submodel
element, in this case an operation

inputArgument OperationVariable[0..*] Input argument
inoutputArgument OperationVariable[0..*] Inoutput argument
timeout nonNegativelnteger Client timeout
requestld string Client request id

statusCode StatusCode Status code
payload OperationHandle The returned handle of an operation’s asynchronous

invocation used to request the current state of the
operation’s execution

4.3.12 Operation GetOperationAsyncResult

OJ LICUINNEINEI GetOperationAsyncResult

Explanation Returns the OperationResult of an asynchronously invoked operation

semanticld https://admin-shell.io/aas/AP1/GetOperationAsnycResult/1/0/RC01

operationHandle OperationHandle The returned handle of an operation’s asynchronous
invocation used to request the current state of the
operation’s execution

Asset Administration Shell Serialization Interface and Operations | Page 31

statusCode StatusCode Status code

payload OperationResult Operation Result

4.4 Asset Administration Shell Serialization Interface and Operations

4.4.1 Interface Asset Administration Shell Serialization

Operation Name Description

GetAASX Returns an appropriate AASX-Package with the respective Asset Administration Shells

GetSerializationBylds Returns an appropriate serialization based on the specified format (see
SerializationFormat).

4.4.2 Operation GetAASX

Explanation Returns a file .aasx following the AASX-Package format containing the requested Asset
Administration Shells

The package may contain more content (e.g. Asset Administration Shells, Submodels, etc.)

References to Assets, Submodels and Concept Descriptions are only resolved if the referenced
content is available to the Asset Administration Shell.

semanticld https://admin-shell.io/aas/API/GetAASX/1/0/RCO1

aaslds Identifier[1..*] The unique ids of the Asset Administration Shells to be
contained in the AASX-Package

statusCode StatusCode Status code

Page 32| Details of the Asset Administration Shell - Part 2

OJ I INNEINEIN GetAASX

payload .aasx package file .aasx file, Asset Administration Shell Exchange Package
(AASX)

4.4.3 Operation GetSerializationBylds

Operation Name GetSerializationBylds

Explanation Returns an appropriate serialization based on the specified format (see
SerializationFormat).

References to Assets, Submodels and Concept Descriptions are only resolved if the
referenced content is available to the Asset Administration Shell.

semanticld https://admin-shell.io/aas/AP1/GetSerializationByIds/1/0/RC01

aasld Identifier[1..*] The unique id of the Asset Administration Shells to be
contained in the serialization

serializationFormat SerializationFormat Determines the format of serialization, i.e. JSON,
XML, RDF, AML, etc.

statusCode StatusCode Status code

payload AssetAdministrationShell[0...*]+ Serialization of requested Asset Administration Shells
in specified serialization format as byte string

5 Interfaces Registration and Lookup

Page 34 | Details of the Asset Administration Shell - Part 2

5.1 General

These interfaces allow to register and unregister descriptors of administration shells or submodels. These
descriptors contain the required information that is needed to access the interfaces (Interfaces described in Clause
3.5) of the corresponding element. This required information includes the endpoint in the dedicated environment.

Lookup interfaces provide access to the registered descriptors by identifiers (Asset Administration Shell and
Submodel ID). These Identifiers may be discovered by Interfaces described in Clause 7.

Sometimes, these kinds of services are also classified as management services.

5.2 Asset Administration Shell Registry Interface and Operations

w

.2.1 Interface Asset Administration Shell Registry

Operation Name Description

GetAllAssetAdministrationShellDescriptors Returns all Asset Administration Shell Descriptors
GetAssetAdministrationShellDescriptorByld Returns a specific Asset Administration Shell Descriptor

PutAssetAdministrationShellDescriptor Creates a new or updates an existing Asset Administration Shell
Descriptor

DeleteAssetAdministrationShellDescriptorByld Deletes an Asset Administration Shell Descriptor

5.2.2 Operation GetAllAssetAdministrationShellDescriptors

OI I IMNEINEIN GetAllAssetAdministrationShellDescriptors
Explanation Returns all Asset Administration Shell Descriptors

semanticld https://admin-shell.io/aas/APl/GetAllAssetAdministrationShellDescriptors/1/0/RC01

statusCode StatusCode Status code

payload AssetAdministrationShellDescriptor[0..*] Requested Asset Administration Shell Descriptors

Asset Administration Shell Registry Interface and Operations | Page 35

5.2.3 Operation GetAssetAdministrationShellDescriptorByld

OI LIEUINNEINEI GetAssetAdministrationShellDescriptorByld
Explanation Returns a specific Asset Administration Shell Descriptor

semanticld https://fadmin-shell.io/aas/AP1/GetAssetAdministrationShellDescriptorBy1d/1/0/RC01

Id Identifier The Asset Administration Shell’s unique id

statusCode StatusCode Status code

payload AssetAdministrationShellDescriptor ~ Requested Asset Administration Shell Descriptor

5.2.4 Operation PutAssetAdministrationShellDescriptor

O I IMNEINI PutAssetAdministrationShellDescriptor
Explanation Creates a new or updates an existing Asset Administration Shell Descriptor

semanticld https://admin-shell.io/aas/API/PutAssetAdministrationShellDescriptor/1/0/RC01

shellDescriptor AssetAdministrationShellDescriptor = Object containing the Asset Administration Shell’s
identification and endpoint information

statusCode StatusCode Status code

payload AssetAdministrationShellDescriptor Created or updated Asset Administration Shell
Descriptor

Page 36 | Details of the Asset Administration Shell - Part 2

5.2.5 Operation DeleteAssetAdministrationShellDescriptorByld

OI LICUINNEINEI DeleteAssetAdministrationShellDescriptorByld
Explanation Deletes an Asset Administration Shell Descriptor

semanticld https://fadmin-shell.io/aas/AP1/Delete AssetAdministrationShellDescriptorByld/1/0/RCO1

id Identifer The Asset Administration Shell’s unique id

statusCode StatusCode Status code

5.3 Submodel Registry Interface and Operations

w

.3.1 Interface Submodel Registry

Operation Name Description

GetAllSubmodelDescriptors Returns all submodel descriptors
GetSubmodelDescriptorByld Returns a specific submodel descriptor
PutSubmodelDescriptor Creates a new or updates an existing submodel descriptor
DeleteSubmodelDescriptorByld Deletes a submodel descriptor

5.3.2 Operation GetAllSubmodelDescriptors

OJLICUINNETNEE GetAllSubmodelDescriptors
Explanation Returns all submodel descriptors

semanticld https://admin-shell.io/aas/AP1/GetAllISubmodelDescriptors/1/0/RC01

Submodel Registry Interface and Operations | Page 37

OJ U INNEINEI GetAllSubmodelDescriptors

statusCode StatusCode Status code

payload SubmodelDescriptor[0..*] Requested submodel descriptors

5.3.3 Operation GetSubmodelDescriptorByld

OJ I INNEINEI GetSubmodelDescriptorByld
Explanation Returns a specific Submodel Descriptor

semanticld https://fadmin-shell.io/aas/AP1/GetSubmodelDescriptorByld/1/0/RCO1

Id Identifier The Submodel’s unique id

statusCode StatusCode Status code

payload SubmodelDescriptor Requested submodel descriptor

5.3.4 Operation PutSubmodelDescriptor

oI Ul INNEINI PutSubmodelDescriptor
Explanation Creates a new or updates an existing submodel descriptor

semanticld https://admin-shell.io/aas/AP1/PutSubmodel Descriptor/1/0/RC01

submodel SubmodelDescriptor Object containing the Submodel’s identification and
Descriptor endpoint information

Page 38| Details of the Asset Administration Shell - Part 2

Ol el IMNEINI PutSubmodelDescriptor

statusCode StatusCode Status code

payload SubmodelDescriptor Created or updated submodel descriptor

5.3.5 Operation DeleteSubmodelDescriptorByld

OJ LICUOINNEINEM DeleteSubmodelDescriptorByld
Explanation Deletes a Submodel Descriptor

semanticld https://admin-shell.io/aas/API/DeleteSubmodelDescriptorByld/1/0/RCO1

id Identifier The Submodel’s unique id

statusCode StatusCode Status code

6 Interfaces Repository

Page 40 | Details of the Asset Administration Shell - Part 2

6.1 General

These interfaces allow to manage Asset Administration Shell and submodel entities and provide access to the data of
these elements through interfaces described in Clause 3.5. A repository can host multiple entities. These entities can
be stored in individual repositories of a decentral system. The endpoints of the entities managed by one repository
shall be resolved by subsequent calls to discover (Clause 7) and lookup (Clause 5) interfaces to such decentralized
systems.

Sometimes, these kinds of services are also classified as Asset Administration Shell management services.

The interfaces that provide access to the entities (administration shells, submodels) themselves are convenience
interfaces that provide access in a system where the services are managed by central repositories.

6.2 Asset Administration Shell Repository Interface and Operations

6.2.1 Interface Asset Administration Shell Repository

Operation Name Description
GetAllAssetAdministrationShells Returns all Asset Administration Shells
GetAllAssetAdministrationShellsByld Returns a specific Asset Administration Shell

GetAllAssetAdministrationShellsByAssetld Returns all Asset Administration Shell that are linked to a globally
unique asset identifier or to specific asset ids.

GetAllAssetAdministrationShellsByldShort Returns all Asset Administration Shells with a specific idShort
PutAssetAdministrationShell Creates a new or updates an existing Asset Administration Shell

DeleteAssetAdministrationShellByld Deletes an Asset Administration Shell

6.2.2 Operation GetAllAssetAdministrationShells

Operation Name GetAllAssetAdministrationShells
Explanation Returns all Asset Administration Shells

semanticld https://admin-shell.io/aas/AP1/GetAllAssetAdministrationShells/1/0/RC01

outputModifier OutputModifier Determines the result format filtering of the response

Asset Administration Shell Repository Interface and Operations | Page 41

OJ U INNEINIIN GetAllAssetAdministrationShells

statusCode StatusCode Status code

payload AssetAdministrationShell[0..*] Requested Asset Administration Shells

6.2.3 Operation GetAssetAdministrationShellByld

Operation Name GetAssetAdministrationShellsByld
Explanation Returns a specific Asset Administration Shell

semanticld https://admin-shell.io/aas/APl/GetAssetAdministrationShellsBy1d/1/0/RC01

id Identifier The Asset Administration Shell’s unique id
outputModifier OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload AssetAdministrationShell Requested Asset Administration Shell

6.2.4 Operation GetAllAssetAdministrationShellsByAssetld

OI U INNEININ GetAllAssetAdministrationShellsByAssetld

Explanation Returns all Asset Administration Shell that are linked to a globally unique asset identifier or
to specific asset ids.

semanticld https://admin-shell.io/aas/AP1/GetAll AssetAdministrationShellsByAssetld/1/0/RCO1

Page 42 | Details of the Asset Administration Shell - Part 2

OJ U INNEININ GetAllAssetAdministrationShellsByAssetld

key string The key name of the specific asset identifier
(IdentifierKeyValuePair/key) or the predefined key
“globalAssetld” that would refer to the
AssetInformation/globalAssetld.

keyldentifier string The key identifier object

outputModifier OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload AssetAdministrationShell[0..*] Requested Asset Administration Shells

6.2.5 Operation GetAllAssetAdministrationShellsByldShort

OI I IMNEINI GetAllAssetAdministrationShellsByldShort
Explanation Returns all Asset Administration Shells with a specific idShort

semanticld https://admin-shell.io/aas/AP1/GetAllAssetAdministrationShellsByldShort/1/0/RC01

idShort string The Asset Administration Shell’s idShort
outputModifier OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload AssetAdministrationShell[0..*] Requested Asset Administration Shells

6.2.6 Operation PutAssetAdministrationShell

Operation Name PutAssetAdministrationShell

Explanation Creates a new or updates an existing Asset Administration Shell

Submodel Repository Interface and Operations | Page 43

OJ U INNEINI PutAssetAdministrationShell

semanticld https://admin-shell.io/aas/APl/PutAssetAdministrationShell/1/0/RCO1

aas AssetAdministrationShell Asset Administration Shell object

statusCode StatusCode Status code

payload AssetAdministrationShell Created or updated Asset Administration Shell

6.2.7 Operation DeleteAssetAdministrationShellByld

OI U INNEINII DeleteAssetAdministrationShellByld
Explanation Deletes an Asset Administration Shell

semanticld https://admin-shell.io/aas/APl/DeleteAssetAdministrationShellByld/1/0/RC01

id Identifier The Asset Administration Shell’s unique id

statusCode StatusCode Status code

6.3 Submodel Repository Interface and Operations

o

.3.1 Interface Submodel Repository

Operation Name Description

GetAllSubmodels Returns all Submodels

Page 44 | Details of the Asset Administration Shell - Part 2

GetSubmodelByld Returns a specific Submodel
GetAllSubmodelsBySemanticld Returns all Submodels with a specific Semanticld
GetAllSubmodelsByldShort Returns all Submodels with a specific idShort
PutSubmodel Creates a new or updates an existing Submodel
DeleteSubmodelByld Deletes a Submodel

6.3.2 Operation GetAllSubmodels

OJLICUOINNETNEI GetAllSubmodels
Explanation Returns all Submodels

semanticld https://admin-shell.io/aas/AP1/GetAllSubmodels/1/0/RC01

outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload Submodel[0..*] Requested Submodels

6.3.3 Operation GetSubmodelByld

OJ U INNEINEE GetSubmodelByld
Explanation Returns a specific Submodel

semanticld https://admin-shell.io/aas/API/GetSubmodelByld/1/0/RCO1

Submodel Repository Interface and Operations | Page 45

OI Il INNEINEI GetSubmodelByld

id Identifier The Submodel’s unique id

outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload Submodel Requested Submodel

6.3.4 Operation GetAllSubmodelsBySemanticld

OI LIEUINNETNEE GetAllSubmodelsBySemanticld
Explanation Returns all Submodels with a specific Semantic-Id

semanticld https://admin-shell.io/aas/AP1/GetAllSubmodelsBySemanticld/1/0/RCO1

semanticld Reference Identifier of the semantic definition
outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload Submodel[0..*] Requested Submodels

6.3.5 Operation GetAllSubmodelsByldShort

O] LICULINNEINEE GetAllSubmodelsByldShort
Explanation Returns all Submodels with a specific idShort

semanticld https://admin-shell.io/aas/AP1/GetAlISubmodelsByldShort/1/0/RCO1

Page 46 | Details of the Asset Administration Shell - Part 2

O Il IMNEINI GetAllSubmodelsByldShort

idShort string The Submodel’s idShort

outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload Submodel[0..*] Requested Submodels

6.3.6 Operation PutSubmodel

OJ LU INNEINEI PutSubmodel
Explanation Creates a new or updates an existing Submodel

semanticld https://admin-shell.io/aas/API/PutSubmodel/1/0/RCO1

submodel Submodel Submodel object

statusCode StatusCode Status code

payload Submodel Created or updated Submodel

6.3.7 Operation DeleteSubmodelByld

OJ LICUINNEINEE DeleteSubmodelByld
Explanation Deletes a Submodel

semanticld https://admin-shell.io/aas/AP1/DeleteSubmodelByld/1/0/RC01

Submodel Repository Interface and Operations | Page 47

DeleteSubmodelByld

id Identifier The Submodel’s unique id

statusCode StatusCode Status code

7 Interfaces Publish and Discovery

General | Page 49

7.1 General

These interfaces allow to publish information about administration shells or submodels that allow a search for 1Ds of
the corresponding elements in a subsequent discover interface call. The discover interface allows the search for
identifiers with appropriate request descriptions (queries, lists of attributes, regular expressions,..). These Identifiers
can be used to lookup the descriptors of the corresponding element (by use of registration and lookup interfaces
described in Clause 5) to be able to call the interfaces to access data of the element described in Clause 3.5.

Sometimes, these kinds of services are also classified as exposure and discovery services.
7.2 Asset Administration Shell Basic Discovery Interface and Operations

7.2.1 Interface Asset Administration Shell Basic Discovery

GetAllAssetAdministrationShellldsByAssetld Returns all Asset Administration Shell Ids that are linked to a
globally unique asset identifier or to specific asset ids

PutAssetld Creates or updates the link between the Asset Administration
Shell 1d and the globally unique Asset id

7.2.2 Operation GetAllAssetAdministrationShellldsByAssetld

GetAllAssetAdministrationShellldsBy Assetld

Explanation Returns all Asset Administration Shell Ids that are linked to a globally unique asset identifier
or to specific asset ids

semanticld https://admin-shell.io/aas/AP1/GetAllAssetAdministrationShellldsByAssetld/1/0/RCO1

key string The key name of the specific asset identifier
(IdentifierKeyValuePair/key) or the predefined key
“globalAssetld” that would refer to the
AssetInformation/global Assetld.

keyldentifier string The key identifier object

Page 50 | Details of the Asset Administration Shell - Part 2

OJ I IMNEINEI GetAllAssetAdministrationShellldsByAssetld

statusCode StatusCode Status code

payload Identifier[0..*] Requested Asset Administration Shell Identifiers

7.2.3 Operation PutAssetld

OJ Ul INNEINI PutAssetld

Explanation Creates or updates the link between the Asset Administration Shell Id and the globally unique
or a specific Asset id

semanticld https://admin-shell.io/aas/API/PutAssetld/1/0/RC01

id Identifier The Asset Administration Shell’s unique id
key string The key name of the specific asset identifier

(IdentifierKeyValuePair/key) or the predefined key
“globalAssetld” that would refer to the
AssetInformation/globalAssetld.

keyType IdentifierType[0..1] Key type.
Mandatory for global asset id (corresponds to
Identifier/idType)

keyldentifier string The key identifier object

statusCode StatusCode Status code
payload IdentifierKeyValuePair or Created or updated Asset Identifier. In case of the global
Reference asset id a Reference is returned, in case of a specific asset

id an identifier key value pair is returned.

Submodel Discovery Basic Interface and Operations | Page 51

7.3 Submodel Discovery Basic Interface and Operations

7.3.1 Interface Submodel Discovery

GetAllSubmodelldsBySemanticld Returns all Submodel 1ds found based on a specific Semanticld

7.3.2 Operation GetSubmodelldsBySemanticld

OJ LIEUOINNEINEE GetAllSubmodelldsBySemanticld
Explanation Returns all Submodel Ids found based on a specific Semanticld

semanticld https://admin-shell.io/aas/APl/GetAllISubmodelldsBySemanticld/1/0/RC01

semanticld Reference Identifier of the semantic definition

statusCode StatusCode Status code

payload Identifier[0..*] Requested Submodel Identifiers

8 Interfaces Concept Descriptions Access

General | Page 53

8.1 General

In this Clause all interfaces and operations w.r.t. concept descriptions in a repository are specified.

8.2 Concept Description Repository Interface and Operations

(=]

.2.1 Interface Concept Description Repository

Operation Name Description

GetAllConceptDescriptions Returns all Concept Descriptions

GetConceptDescriptionByld Returns a specific Concept Description

GetAllConceptDescriptionsByldShort Returns all Concept Descriptions with a specific
idShort

GetAllConceptDescriptionsBylsCaseOf Returns all Concept Descriptions with a specific

IsCaseOf-reference

GetAllConceptDescriptionsWithDataSpecificationReference Returns all Concept Descriptions with a specific
dataSpecification reference

PutConceptDescription Creates a new or updates an existing Concept
Description
DeleteConceptDescriptionByld Deletes a Concept Description

8.2.2 Operation GetAllConceptDescriptions

Ol U INNEINEI GetAllConceptDescriptions
Explanation Returns all Concept Descriptions

semanticld https://admin-shell.io/aas/AP1/GetAllConceptDescriptions/1/0/RC01

outputModifier ~ OutputModifier Determines the result format filtering of the response

Page 54 | Details of the Asset Administration Shell - Part 2

OILIEUINNEINEI GetAllConceptDescriptions

statusCode StatusCode Status code

payload ConceptDescription[0..*] Requested Concept Descriptions

8.2.3 Operation GetConceptDescriptionByld

OI LICUINNEINEI GetConceptDescriptionByld

Explanation Returns a specific Concept Description

semanticld https://fadmin-shell.io/aas/AP1/GetConceptDescriptionByld/1/0/RCO1

id Identifier The Concept Description’s unique id
outputModifier ~ OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload ConceptDescription Requested Concept Description

Concept Description Repository Interface and Operations | Page 55

8.2.4 Operation GetAllConceptDescriptionsByldShort

Operation Name GetAllConceptDescriptionsByldShort
Explanation Returns all Concept Descriptions with a specific idShort

semanticld https://admin-shell.io/aas/AP1/GetAllConceptDescriptionsByldShort/1/0/RC01

idShort string The Concept Description’s idShort
outputModifier OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload ConceptDescription[0..*] Requested Concept Descriptions

8.2.5 Operation GetAllConceptDescriptionsBylsCaseOf

Operation Name GetAllConceptDescriptionsBylsCaseOf
Explanation Returns all Concept Descriptions with a specific IsCaseOf-reference

semanticld https://admin-shell.io/aas/AP1/GetAllConceptDescriptionsBylsCaseOf/1/0/RC01

isCaseOf Reference IsCaseOf reference
outputModifier OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload ConceptDescription[0..*] Requested Concept Descriptions

Page 56 | Details of the Asset Administration Shell - Part 2

8.2.6 Operation GetAllConceptDescriptionsWithDataSpecificationReference

OJ U INNEINII GetAllConceptDescriptionsWithDataSpecificationReference
Explanation Returns all Concept Descriptions with a specific dataSpecification reference

semanticld https://admin-
shell.io/aas/AP1/GetAllConceptDescriptionsWithDataSpecificationReference/1/0/RC01

dataSpecification- Reference DataSpecification reference
Reference
outputModifier OutputModifier Determines the result format filtering of the response

statusCode StatusCode Status code

payload ConceptDescription[0..*] Requested Concept Descriptions

8.2.7 Operation PutConceptDescription

Operation Name PutConceptDescription
Explanation Creates a new or updates an existing Concept Description

semanticld https://fadmin-shell.io/aas/AP1/PutConceptDescription/1/0/RC01

conceptDescription ConceptDescription Concept Description object

statusCode StatusCode Status code

payload ConceptDescription Created or updated Concept Description

Concept Description Repository Interface and Operations | Page 57

8.2.8 Operation DeleteConceptDescriptionByld

Operation Name DeleteConceptDescriptionByld
Explanation Deletes a Concept Description

semanticld https://admin-shell.io/aas/API1/DeleteConceptDescriptionByld/1/0/RC01

id Identifier The Concept Description’s unique id

statusCode StatusCode Status code

9 Data Types for Payload

General | Page 59

9.1 General

For metamodel elements like AssetAdministrationShell, Submodel, Identifier etc. that are specified in [1], please
refer to [1]. In this clause, additional classes needed for interface payloads are specified.

9.2 Metamodel Specification Details: Designators

AssetAdministrationShellDescriptor

AssetAdministrationShellDescriptor

Descriptor of an Asset Administration Shell

|
https://admin-shell.io/aas/API/AssetAdministrationShellDescriptor/1/0/RCO1

Attribute Type Description
= mandatory)

administration Administrativelnformation[0..1] Administrative information of the Asset
Administration Shell.

description LangStringSet[0..1] Description or comments on the Asset
Administration Shell.

globalAssetld Reference[0..1] Reference to either an Asset object or a global
reference to the asset the AAS is representing.

specificAssetld IdentifierKeyValuePair[0..*] Specific asset identifier.

endpoint Endpoint[0..*] Endpoint of the Asset Administration Shell.
idShort String[0..1] Short name of the Asset Administration Shell.
identification* Identifier Globally unique identification of the Asset

Administration Shell.

submodelDescriptor = SubmodelDescriptor[0..*] Descriptor of a submodel of the Asset
Administration Shell.

Page 60 | Details of the Asset Administration Shell - Part 2

9.2.2 SubmodelDescriptor

SubmodelDescriptor

A descriptor of a submodel

|
https://admin-shell.io/aas/API/SubmodelDescriptor/1/0/RCO1

Attribute Type
(* = mandatory)

Description

administration Administrativelnformation[0..1] Administrative information of the Submodel.

description LangStringSet[0..1] Description or comments on the Asset Administration Shell.
endpoint Endpoint[0..*] Endpoint of the Submodel

idShort String[0..1] Short name of the Submodel.

identification* Identifier Globally unique identification of the Submodel.

semanticld Reference[0..1] Identifier of the semantic definition of the Submodel.

9.2.3 Endpoint

An endpoint
|
https://admin-shell.io/aas/API/Endpoint/1/0/RC01

Attribute Type Description
(* = mandatory)

address string Address

type string Type of the endpoint.

Metamodel Specification Details: Designators | Page 61

9.2.4 Status Code, Error Handling & Result Messages

In this clause it will be dealt with the error and result handling of an operation’s execution in a technology-
independent manner.

The first section covers generic status codes that are returned on each and every request independent of the
operation’s success or failure. The subsequent section describes the result object that is returned in case of failure.

9.2.4.1 Generic Status Codes

Successful operations return one of the success status codes and their respective payload. Unsuccessful operations
return one of the failure status codes and a result object as defined in Clause 9.2.4.2.

Table 1 shows generic status codes being returned to the requester. Additionally, the table indicates whether a
specific status code comes with a result object in the returned payload.

Success Success No
SuccessCreated Creation of a new resource successful No
SuccessNoContent Success with explicitly no content in the payload No
ClientForbidden Request is unauthorized Yes
ClientErrorBadRequest Bad or malformed request Yes
ClientMethodNotAllowed Operation request is not allowed Yes
ClientErrorResourceNotFound Resource not found Yes
ServerlinternalError Unexpected error Yes
ServerErrorBadGateway Bad Gateway Yes

9.2.4.2 General Result Object

In case of a failed operation execution a result object shall be returned containing more information about the
reasons why the operation failed to execute.

Explanation The result object

Attribute Type Description

(* = mandatory)

Page 62 | Details of the Asset Administration Shell - Part 2

success* boolean Indicated whether the operation execution is seen as successful

message Message[0..*] Additional message containing information for the requester

. A message containing more information for the requester about a certain
Explanation .
happening in the backend.

Attribute Type Description

(* = mandatory)

messageType* MessageTypeEnum The message type

text* string The message text

code String[0..1] Technology-dependent status or error code
timestamp dateTime[0..1] Timestamp of the message

Enumeration MessageTypeEnum

Explanation The message type

Info Used to inform the user about a certain fact
Warning Used for warnings. Warnings may lead to errors in the subsequent execution
Error Used for handled errors

Exception Used if it is an internal and/or unhandled exception that occurred

10 Base Operation Parameters

Page 64 | Details of the Asset Administration Shell - Part 2

10.1 General

In this clause the parameters used in the operation specifications are specified.

10.2 OutputModifier in Operations
Definition

The OutputModifier indicates the requester’s expected or desired format of the response content of a requested
operation. The OutputModifier comprises three orthogonal choices/fields etc. These enumerations combined form
the response content of the requested operation.

1. Enumeration: Level

The first enumeration Level indicates the depth of the response content’s structure.

Value Explanation

Deep (Default) All elements of requested hierarchy level and all children on all sublevels are
returned

Core Only elements of a requested hierarchy level as well as direct children are being
returned

2. Enumeration: Content

The second enumeration Content indicates the kind of the response content’s serialization.

Value Explanation

Normal (Default) The standard serialization of the model element is applied.

Value Only the raw value of the model element is being returned according to Clause
10.3.1

Reference Only applicable to Referables. The reference to found elements is being
returned.

Path Returns a list of idShort paths to found elements within a SubmodelElement
hierarchy

3. Enumeration: Extent

The third enumeration Extent indicates to which extent the result content is being serialized.

4. Value 5. Explanation

WithoutBLOBValue (Default) | Only applicable to BLOB-elements. The BLOB content is not being returned.

WithBLOBValue Only applicable to BLOB-elements. The BLOB content is being returned as
base64 encoded string

Serialization in Specified Formats (Output Modifier) | Page 65

10.3 Serialization in Specified Formats (Output Modifier)

10.3.1 General

For the output modifier ,,Content = Value“ it depends on the serialization output format how it is realized.

Up to now only the serialization for JSON is specified .For other serialization formats (e.g. XML, RDF etc.) this
has to be defined in a similar way but is not yet part of this document version.

10.3.2 Serialization in JSON Values Format

This clause explains how a return value is serialized in JSON if the output modifier ,Content = Value® is set.

In many cases, applications using the data from Asset Administration Shells already know the submodel regarding
its structure, attributes and semantics. Consequently, there is not always a need to receive the entire model
information in each and every request since they are stable most of the time. Instead, applications are mostly
interested only in the raw values of the modelled data. Furthermore, having limited processing power or limited
bandwidth, the use case of this output modifier is to transfer data as efficient as possible.

Values are only available for

e All subtypes of abstract type DataElement,

e SubmodelElementCollection,

e ReferenceElement,

e RelationshipElement + AnnotatedRelationshipElement,
e Entity

Operations and Events and Capabilities are considered to be excluded from the scope of that output modifier since
only the output for elements containing data is relevant. In the serialization they are omitted.

The following rules shall be adhered when serializing a submodel with the output modifier Value:

e A submodel is serialized as an unnamed JSON object.

e Asubmodel element is considered a leaf submodel element if it does not contain other submodel elements.
A leaf submodel element follows the rules as described in the following for the different submodel
elements considered in the serialization. Otherwise, i.e. if not a leaf element, it means transitively
following the serialization rules until the value is a leaf submodel element.

e For each submodel element:

o Property is serialized as $ { Property/idShort}: ${Property/value} where
${Property/value} is the JSON serialization of the respective property’s value.

o MultiLanguageProperty is serialized as named JSON object with
${MultilLanguageProperty/idShort} asthe name of the containing JSON property. The
JSON object contains JSON properties for each language of the MultiLanguageProperty with the
language as name and the corresponding localized string as value. The language name is defined
as two chars according to I1SO 639-1.

Page 66 | Details of the Asset Administration Shell - Part 2

o Range is serialized as named JSON object with $ {Range/idShort} asthe name of the
containing JSON property. The JSON object contains two JSON properties. The first is named
“min”. The second is named “max”. Their corresponding values are $ {Range/min} resp.
${Range/max}.

o File and Blob are serialized as named JSON objects with ${File/idShort} or
${Blob/idShort} asthe name of the containing JSON property. The JSON object contains
two JSON properties. The first refers to the mime type named “mimeType”
${File/mimeType} resp.${Blob/mimeType}. The seconds refers to the value named
“value” ${File/value} resp. ${Blob/value}.

o SubmodelElementCollections are serialized depending on the attribute allowDuplicates.
= allowDuplicates = true
= The collection is assumed to be a list, set or bag and hence serialized as named
JSON array with $ {Collection/idShort} asthe name of the containing
JSON property. The elements contained within the collection are serialized as
unnamed JSON objects.
= allowDuplicates = false
= The collection is assumed to be an entity with distinct elements and hence
serialized as named JSON object with $ {Collection/idShort} asthe
name of the containing JSON property.
= Nested case: The SubmodelElementCollection’s contained submodel elements
${Collection/value} are serialized according to the rules mentioned in this
section.

o ReferenceElement is serialized as $ {ReferenceElement/idShort}:
${ReferenceElement/value} where ${ReferenceElement/value} isthe
standardized string representation of a reference according to Clause Serialization of Values of
Type “Reference” in [2].

o RelationshipElement is serialized as named JSON object with
${ReleationshipElement/idShort} asthe name of the containing JSON property. The
JSON object contains two JSON properties. The first is named “first”. The second is named
“second”. Their corresponding values are $ {RelationshipElement/first} resp.
${Relationship/second}. The values are serialized according to the serialization of a
ReferenceElement see above.

o AnnotatedRelationshipElement is serialized according to the serialization of a
ReleationshipElement see above. Additionally, a third named JSON object is introduced with
“annotation” as the name of the containing JSON property. The value is
${AnnotatedRelationshipElement/annotation}. The value is serialized depending
on the type of the annotation data element.

o Entity is serialized as named JSON object with $ {Entity/idShort} asthe name of the
containing JSON property. The JSON object contains three JSON properties. The first is named
“statements” $ {Entity/statements} and contains the serialized submodel elements
according to their respective serialization mentioned in this clause. The second is named either

Serialization in Specified Formats (Output Modifier) | Page 67

“global Assetld” or “specificAssetld” and contains either a Reference (see above) or an
IdentifierKeyValuePair. The third property is named “entityType” and contains a string
representation of $ {Entity/entityType}.

o ldentifierKeyValuePair is serialized as named JSON object with three JSON properties names as
the attributes of IdentifierKeyValuePair.

e Submodel elements defined in the submodel other than the ones mentioned above are not subject to
serialization of that output modifier.

Examples conformant to [3]:

Standard-Output for a single submodel element (here: Property) in the payload:

"value": "5000",
"semanticId": {
"keys": [
{
"type": "ConceptDescription",
"value": "0173-1#02-BAA120#008",
"index": 0,
"idType": "IRDI"
}
]
by
"constraints": [],
"idShort": "MaxRotationSpeed",
"category": "PARAMETER",

"modelType": {
"name": "Property"

b

"valueType": {
"dataObjectType": {

"name": "integer"

}l

"kind": "Instance"

With output modifier Value the payload is minimized to the following

Page 68 | Details of the Asset Administration Shell - Part 2

"MaxRotationSpeed": "5000"

For a SubmodelElementCollection (allowDuplicates = false) meaning that submodel elements within the collection
can only have distinct semanticlds (in this example: for each the mother’s name, the father’s name and the son’s
name), the collection is serialized as objects denoted by curly brackets:

"NamesOfFamilyMembers": {
"NameOfMother": "Mary ExampleFamily",
"NameOfFather": "Jonathan ExampleFamily",

"NameOfSon": "Clark ExampleFamily"

For a SubmodelElementCollection (allowDuplicates = true) meaning that submodel elements within the collection
have the same semanticld (in this example: all family members have a name that in turn has one semanticld for the
name) are allowed, the collection is serialized as array denoted by square brackets:

"NamesOfFamilyMembers": [

"Mary ExampleFamily", "Jonathan ExampleFamily", "Clark ExampleFamily"

For SubmodelElementCollection (allowDuplicates = true) named “Families” containing other
SubmodelElementCollections named “NamesOfFamilyMembers” (allowDuplicates = false) the payload is serialized
as follows:

"Families": [

"NamesOfFamilyMembers": ({
"NameOfMother": "Mary ExampleFamily",
"NameOfFather": "Jonathan ExampleFamily",
"NameOfSon": "Clark ExampleFamily"
}
b

"NamesOfFamilyMembers": ({
"NameOfMother": "Mary OtherFamily",
"NameOfFather": "Thomas OtherFamily",
"NameOfSon": "Harry OtherFamily"

}

For SubmodelElementCollection (allowDuplicates = true) named “Families” containing other
SubmodelElementCollections named “NamesOfFamilyMembers” (allowDuplicates = true) the payload is serialized
as follows:

Serialization in Specified Formats (Output Modifier) | Page 69
"Families": [

"NamesOfFamilyMembers":
["Mary ExampleFamily", "Jonathan ExampleFamily", "Clark ExampleFamily"]

b

"NamesOfFamilyMembers":

["Mary ExampleFamily", "Thomas ExampleFamily", "Bruce ExampleFamily"]

For a MultiLanguageProperty named “Label” the payload is minimized to the following:

"Label™: {
"de": "Das ist ein deutscher Bezeichner",
"en": "That’s an English label”
}
In case a preferred language is defined, say English, than the payload is reduced to:

"Label": “That’s an English label"

For a Range named “TorqueRange” the payload is minimized to the following:

"TorqueRange": {
HMinH: HSOH’
"Max": "5000"

For a ReferenceElement named “MaxRotationSpeedReference” the payload is minimized to the following:

"MaxRotationSpeedReference":
" (Submodel) [IRI]http://customer.com/demo/aas/1/1/1234859590, (Property) [IdShort]MaxRotationSpeed"

For a File named “Document” the payload is minimized to the following:

"Document": {
"mimeType": "application/pdf",
"value": "SafetyInstructions.pdf"

}

For a Blob named “Library” the payload is minimized to the following if the output modifier Extent is set to
WithoutBLOBValue

"Libary": {

"mimeType": "application/pdf"

Page 70 | Details of the Asset Administration Shell - Part 2

If the output modifier Extent is set to WithBlobValue, there is an additional attribute containing the base64 encoded
value:

"Libary": {
"mimeType": "application/pdf",

"value": "VGhpcyBpcyBteSBibG9i"

For a RelationshipElement named “CurrentFlowsFrom” the payload is minimized to the following:

"CurrentFlowsFrom": {

"first": " (Submodel) [IRI]http://customer.com/demo/aas/1/1/1234859590,
(Property) [IdShort]PlusPole”

"second": " (Submodel) [IRI]http://customer.com/demo/aas/1/0/1234859123490,
(Property) [IdShort]MinusPole"

}

For an Entity named “MySubAssetEntity” the payload is minimized to the following:
"MySubAssetEntity": {
"statements": [{ "MaxRotationSpeed": "5000" } 1,
"entityType": "SelfManagedEntity",

"globalAssetId": " (Asset) [IRI]http://customer.com/demo/asset/1/1/MySubAsset"

SearchOptions Used in Operations | Page 71

10.4 SearchOptions Used in Operations

Definition

The SearchOptions determine the scope of the search space and thus define the subject of searches.
The search space can be restricted by the level of deepness defined by the enumeration Depth.
SearchOption Depth with Enumeration: DepthEnum

The enumeration DepthEnum indicates the depth of the search space.

Value Explanation

Recursive (Default) The search space is unrestricted. All elements of all hierarchy levels are subject to
searches.

Non-Recursive The search space is restricted to the current requested element and its directly listed
children. Only these elements are subject to searches.

In the following some informal and simplified examples are sketched:

Submodel: MySubmodel

= Property: MyTopLevelProperty (Semanticld: TopLevelSemanticld)
= SMC: MySubmodelElementCollection (Semanticld: SubSMCSemanticld)
o Property: MySubPropertyl (Semanticld: SubPropertylSemancticld)
o Property: MySubProperty?2 (Semanticld: SubProperty2Semancticld)
o SMC: MySubSubmodelElementCollection (Semanticld: SubSubSMCSemanticld)
= Property: MySubSubPropertyl (Semanticld: SubSubPropertylSemancticld)
= Property: MySubSubProperty?2 (Semanticld: SubSubProperty2Semancticld)

Request (GetSubmodelElementByPathAndSemanticld):

GET SubmodelElement FROM MySubmodel/MySubmodelElementCollection
WHERE Semanticld = SubSubPropertylSemancticld AND
SEARCH_OPTIONS (DEPTH = RECURSIVE)

Response:

Status-Code:

Content: Property: MySubSubPropertyl

Request (GetSubmodelElementByPathAndSemanticld):

GET SubmodelElement FROM MySubmodel/MySubmodelElementCollection
WHERE Semanticld = SubSubPropertylSemancticld AND
SEARCH_OPTIONS (DEPTH = NON-RECURSIVE)

Response:

Status-Code: NOTFOUND

11 Summary and Outlook

SearchOptions Used in Operations | Page 73

This document specifies the interfaces for a single Asset Administration Shell and its submodels as well as for a
repository of Asset Administration Shells. Additionally, infrastructural interfaces like Registry and Lookup and
Discovery of a set of Asset Administration Shells are specified. All specifications are provided in a technology

neutral way.

In subsequent versions of this specification APIs specified for a specific technology will be added. The first
technology to be considered is http/REST. Other technologies that are planned to be supported in the future are OPC
UA and MQTT.

Additionally, also some more interfaces, basic services or service profiles may be defined. Querying will be a topic.

Another very important topic that will be looked at in next versions of the specification is the very important topic of
access control to the information an Asset Administration Shell provides and the trustworthiness of the information.

Annex

SearchOptions Used in Operations | Page 75

Annex A. Templates Used for Specification

In this Annex the table templates used for documentation of interfaces, operations, data types etc. are explained.

Table 1 Interface Description

Operl Human understandable description of the operation of the interface. Only major input and
output information shall be described, no individual request and result parameters. Note: All
words in the service operation name are written together in italics without a blank in
between. The first letter of the first word is lower case, all other words upper case

operN (optional) Human understandable description of the operation n of the interface. Optional operations are
to be marked by suffix (optional) after the operation name.

Table 2 Operation Description

Operation Name: Name of the Operation: All individual words in the operation name are capitalized

Explanation: Human understandable description of the functionality.

The operation provides its functionality through the following input and output
parameters:

e Input Parameter 1: human understandable description of the purpose of the input
parameter 1

e Input Parameter N: human understandable description of the purpose of input
parameter N

e Qutput Parameter 1: human understandable description of the purpose of output
parameter 1: human understandable description of the purpose of the input parameter
1

¢ Qutput Parameter N: human understandable description of the purpose of output
parameter N:

If payload is mentioned as output parameter, only the returned payload in case of a
successful operation (status code: Success, SuccessCreated) is denoted in column
Type. In case of failure see Clause 9.2.4.

Page 76 | Details of the Asset Administration Shell - Part 2

Operation Name: Name of the Operation: All individual words in the operation name are capitalized

If no payload is mentioned as output parameter, the status code shall be
SuccessNoContent in case of success, otherwise see Clause 9.2.4.

Convention: All words in the interface name are written together in italics without a
blank in between. The first letter of the first word and all other words are written in
upper case letters.

semanticld The unique identifier of this operation.

Name Description

Human understandable description of the input
parameter 1 of the operation. Note: All words in the
parameter name are written together in italics without
a blank in between. The first letter of the first word is
lower case, all other words upper case.

inputParameterl Type of the input parameter 1

inputParameterN Type of the input parameter N | Human understandable description of the input
parameter N of the operation. Note: All words in the
parameter name are written together in italics without
a blank in between. The first letter of the first word is
lower case, all other words upper case.

outputParameterl Type of the output parameter | Human understandable description of the output

1 parameter 1 of the operation. Note: All words in the
parameter name are written together in italics without
a blank in between. The first letter of the first word is
lower case, all other words upper case.

outputParameterN Type of the output parameter | Human understandable description of the output

N parameter N of the operation. Note: All words in the
parameter name are written together in italics without
a blank in between. The first letter of the first word is
lower case, all other words upper case.

Table 3 Data Types for Payload Description

Class Name: Name of the Class: All individual words in the clas name are capitalized

Explanation: Human understandable description of the class.
The Class has following attributes:
o Attribute 1: human understandable description of the purpose of the attribute 1

SearchOptions Used in Operations | Page 77

Class Name:

Name of the Class: All individual words in the clas name are capitalized

o Attribute N: human understandable description of the purpose of the attribute N

Convention: All words in the class name are written together in italics without a blank in
between. The first letter of the first word and all other words are written in upper case
letters.

Inherits from:

Name of the class this class inherits from

semanticld

Attribute

(*=mandatory)

attributel

Type of the attribute 1 Human understandable description of the attribute 1

The unique identifier of this class.

Description

of the class. Note: All words in the attribute name are
written together in italics without a blank in between.
The first letter of the first word is lower case, all
other words upper case.

attributeN

Type of the attribute N Human understandable description of the attribute N
of the class. Note: All words in the attribute name are
written together in italics without a blank in between.
The first letter of the first word is lower case, all
other words upper case.

Table 4 Enumeration Description

Enumeration Name: Name of the Enumeration: All individual words in the enumeration name

Explanation:

semanticld

Literal

are capitalized

Human understandable description of the enumeration.
The Enumeration has following literals:
o Literal 1: human understandable description of the purpose of the literal 1

e Literal N: human understandable description of the purpose of the literal
N

Convention: All words in the enumeration name are written together in
italics without a blank in between. The first letter of the first word and all
other words are written in upper case letters.

The unique identifier of this enumeration.

Description

Page 78| Details of the Asset Administration Shell - Part 2

Literall Human understandable description of the literal 1 of the enumeration. Note:
All words in the literal name are written together in italics without a blank
in between. The first letter of the first word is lower case, all other words
upper case

LiteralN Human understandable description of the literal N of the enumeration.

Note: All words in the literal name are written together in italics without a
blank in between. The first letter of the first word is lower case, all other
words upper case

<datatype>+ means that the references are resolved. For instance, AssetAdminstrationShell+ means that the
submodels are also returned although only referenced from the Asset Administration Shell.

SearchOptions Used in Operations | Page 79

Annex B. Legend for UML Modelling

i. OMG UML General

In the following the used UML elements used in this specification are explained. For more information please refer
to the comprehensive literature available for UML. The formal specification can be found in [5].

Figure 3 shows a class with name “Class1” and an attribute with name “attr” of type Class2. Attributes are owned by
the class. Some of these attributes may represents the end of binary associations, see also Figure 10. In this case the
instance of Class2 is navigable via the instance of the owning class Class1.?

Figure 3 Class

Class1

+ attr: Class2

Figure 4 shows that Class4 is inheriting all member elements from Class3. Or in other word, Class3 is a
generalization of Class4, Class4 is a specialization of Class3. This means that each instance of Class4 is also an
instance of Class3. An instance of the Class4 has the attributes attrl and attr2 whereas instances of Class3 only
have the attribute attrl.

Figure 4 Inheritance/Generalization

Class3

+ attr1: Class1

Class4
+ attr2: Class2

Figure 5 defines the required and allowed multiplicity/cardinality within an association between instances of Classl
and Class2. In this example an instance of Class2 is always related to exactly one instance of Class1. An instance of

2 Navigability notation was often used in the past according to an informal convention, whereby non-navigable
ends were assumed to be owned by the Association whereas navigable ends were assumed to be owned by the
Classifier at the opposite end. This convention is now deprecated. Aggregation type, navigability, and end
ownership are separate concepts, each with their own explicit notation. Association ends owned by classes are
always navigable, while those owned by associations may be navigable or not. [5]”

Page 80 | Details of the Asset Administration Shell - Part 2

Classl is either related to none, one or more (unlimited, i.e. no constraint on the upper bound) instances of Class2.
The relationship can change over time.

Multiplicity constraints can also be added to attributes and aggregations.
The notation of multiplicity is as follows:
<lower-bound>.. <upper-bound>

Where <lower-bound> is a value specification of type Integer -i.e. 0, 1, 2, ... - and <upper-bound> is a value
specification of type UnlimitedNatural. The star character (*) is used to denote an unlimited upper bound.

The default is 1 for lower-bound and upper-bound.

Figure 5 Multiplicity

Class1 Class2

A multiplicity element represents a collection of values. The default is a set, i.e. it is not ordered and the elements
within the collection are unique, i.e. contain no duplicates. In Figure 6 an ordered collection is shown: the instances
of Class2 related to an instance of Classl are ordered. The stereotype <<ordered>> is used to denote that the
relationship is ordered.

Figure 6 Ordered Multiplicity

Class1 Class2

«ordered»

1 0.*

Figure 7 shows that the member ends of an association can be named as well. 1.e. an instance of Class1 can be in
relationship “relation” to an instance of Class2. Vice versa the instance of Class2 is in relationship
“reverseRelation” to the instance of Classl.

Figure 7 Association

Class1 +reverseRelation +relation| ~ Class2

Figure 8 shows a composition, also called a composite aggregation. A composition is a binary association. It groups

a set of instances. The individuals in the set are typed as specified by Class2. The multiplicity of instances of Class2
to Classl is always 1 (i.e. upper-bound and lower-bound have value “1””). One instance of Class2 belongs to exactly

one instance of Class1. There is no instance of Class2 without a relationship to an instance of Classl. In Figure 9 the
composition is shown using an association relationship with a filled diamond as composition adornment.

SearchOptions Used in Operations | Page 81

Figure 8 Composition (composite aggregation)

Class1 Class2

Figure 9 show an aggregation. An aggregation is a binary association. In contrast to a composition an instance of
Class2 can be shared by several instances of Classl. In Figure 9 the shared aggregation is shown using an
association relationship with a hallow diamond as aggregation adornment.

Figure 9 Aggregation

Class1 Class2

Figure 10 shows that the attribute notation can be used for an association end owned by a class. In this example the
attribute name is “attr” and the elements of this attribute are typed with Class2. The multiplicity, here “0..*”, is
added in square brackets. If the aggregation is ordered then this is added in curly brackets like in this example.

Figure 10 Navigable Attribute Notation for Associations

Class1
+ attr: Class2 [0..*] {ordered}

Figure 11 shows that there is a dependency relationship between Classl and Class2. In this case the dependency
means that Class1 depends on Class2. Why is this: because the type of attribute attr depends on the specification of
class Class2. A dependency is shown as dashed arrow between two model elements.

Figure 11 Dependency

Class1 Class2

+ attr: Class2

Figure 12 shows an abstract class. It uses the stereotype <<abstract>>. There are no instances of abstract classes.
They are typically used to specific member elements that are then inherited by non-abstract classes.

Page 82| Details of the Asset Administration Shell - Part 2

Figure 12 Abstract Class

«abstract»
Class

Figure 13 shows a package with name “Package2”. A package is a namespace for its members. In this example the
member belonging to Package2 is class Class2.

Figure 13 Package

Package2

+ Class2

Figure 14 shows that all elements in Package2 are imported into the namespace defined by Packagel. This is a
special dependency relationship between the two packages with stereotype <<import>>.

Figure 14 Imported Package

Package1 Package2

= + Class1 -~ ————--->>{ & + Class2
1 + Package2 «import»

An enumeration is a data type whose values are enumerated as literals. Figure 15 shows an enumeration with name
“Enumeration1”. It contains two literal values, “a” and “b”. It is a class with stereotype <<enumeration>>. The
literals owned by the enumeration are ordered.

Figure 15 Enumeration

«enumeration»
Enumeration1

a
b

Figure 16 show the definition of the data type with name “DataTypel”. A data type is a type whose instances are
identified only by their value. It is a class with stereotype <<dataType>>.

SearchOptions Used in Operations | Page 83

Figure 16 Data Type

«dataType»
DataType1

Figure 17 shows a primitive data type with name “int”. Primitive data types are predefined data types, without any
substructure. The primitive data types are defined outside UML.

Figure 17 Primitive Data Type

«primitive»
int

Figure 18 shows how a note can be attached to an element, in this example to class “Class1”.

Figure 18 Note

Class1
....... This is the note.

Figure 19 shows how a constraint is attached to an element, in this example to class “Class1”.

Figure 19 Constraint

Class1

{This is the
Constraint.}

ii. Notes to Graphical Representation

In the following specific graphical modelling rules used in this specification are explained that are not included in
this form in [5].

Figure 20 shows two different graphical representations of a composition (composite aggregation). In Variant A) a
relationship with a filled aggregation diamond is used. In Variant B) an attribute with the same semantics is defined.
And in Variant C) the implicitly assumed default name of the attribute in Variant A) is explicitly stated as such.

As a default it is assumed that only the end member of the association is navigable, i.e. it is possible to navigate
from an instance of Class1 to the owned instance of Class2 but not vice versa. If there is no name for the end
member of the association given then it is assumed that the name is identical to the class name but starting with a
small letter — compare to Variant C).

Class2 instance does only exist if parent object of type Classl exists.

Page 84 | Details of the Asset Administration Shell - Part 2

Figure 20 Graphical Representations of Composite Aggregation/Composition

A B) C)

Class1 Class1 Class1

+ class2: Class2

T +cIassZT

Class2 Class2

In Figure 21 different representations of a shared aggregation are shown. In a shared aggregation a Class2 instance
can exist independent of the existence of an an Classl instance. It is just referencing the instances of Class2. In
Variant B) an attribute with the same semantics is defined. The reference is denoted by a star added after the type of
the attribute.

As a default it is assumed that only the end member of the aggregation association is navigable, i.e. it is possible to
navigate from an instance of Class1 to the owned instance of Class2 but not vice versa. Otherwise Variant B) would
not be identical to Variant A).

A speciality in Figure 21 is that the aggregated instances are referables in the sense of the Asset Administration
Shell metamodel (i.e. they inherit from the predefined abstract class “Referable”). This is why Variant C) is also
identical to Variant A) and B). This would not be the case for non-referable elements in the metamodel. The
structure of a reference to a model element of the Asset Administration Shell is explicitly defined. A reference
consists of an ordered list of keys. The last key in the key chain shall reference an instance of type Class2 (i.e.
Reference/type equal to “Class2”).

SearchOptions Used in Operations | Page 85

Figure 21 Graphical Representation of Shared Aggregation

A) B) C)

Class1 Class1 Class1

+ atfr: Class2*

+attr +atfr
Referable Reference
Class2 + key: Key [0..7]

]

{Keyltype = Class2
(of last Key in Key Chain)}

Figure 22 show different graphical representations of generalization. Variant A) is the classical graphical
representation as defined in [5]. Variant B) is a short form if Class1 is not on the same diagram. To see from which
class Class3 is inheriting the name of the class is depicted in the upper right corner.

Variant C) is not only showing from which class Class3 instances are inheriting but also what they are inheriting.
This is depicted by the class name it is inheriting from followed by “::” and then the list of all inherited elements —
here attribute class2. Typically, the inherited elements are not shown.

Figure 22 Graphical Representation of Generalization/Inheritance

A) B) C)
Class1 Class1 Class1
Class3 Class3
+ class2: Class2
::Class1

Zr + class2: Class2

Class3

In Figure 23 different graphical notations for enumerations in combination with inheritance are shown. In Variant
A) enumeration “Enumeration1” additionally contains the literals as defined by “Enumeration2”. Note: the direction
of inheritance is opposite to the one for class inheritance. This can be seen in Variant C) that defined the same
enumerations but without inheritance. In Variant B) another graphical notation is shown that makes it visible which

Page 86 | Details of the Asset Administration Shell - Part 2

literals are inherited by which enumeration. The literals within an enumeration are ordered so the order of classes it
is inheriting from is important.

Figure 23 Graphical Representation for Enumeration with Inheritance

A) B) C)
«enumeration» i
. «enumeration» .
Enumeration1 . «enumeration»
Enumeration1 .
a Enumeration1
a
) a
47 Attributes b
. ::Enumeration2
«enumeration» + Db
Enumeration2 .
«enumeration»
b Enumeration2
b

SearchOptions Used in Operations | Page 87

Annex C. Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

Details of the Asset Administration Shell. Document Series. Federal Ministry for Economic
Affairs and Energy (BMWi). Online. Available: https://www.plattform-
i40.de/P140/Redaktion/EN/Standardartikel/specification-administrationshell.html

Details of the Asset Administration Shell. Part 1 - The exchange of information between
partners in the value chain of Industrie 4.0", Federal Ministry for Economic Affairs and Energy
(BMWi). Online. Available: https://www.plattform-
i40.de/P140/Redaktion/EN/Downloads/Publikation/Details-of-the-Asset-Administration-Shell-
Part1.html

“Details of the Asset Administration Shell. Part 1 - The exchange of information between
partners in the value chain of Industrie 4.0", Version 3.0RC01. Federal Ministry for Economic
Affairs and Energy (BMWi), November 2020. Online. Available: https://www.plattform-
i40.de/P140/Redaktion/EN/Downloads/Publikation/Details-of-the-Asset-Administration-Shell-
Part1/3/0.html

Tom Preston-Werner. Semantic Versioning. Version 2.0.0. Online. Available:
https://semver.org/spec/v2.0.0.html

OMG Unified Modeling Language (OMG UML). Formal/2017-12-05. Version 2.5.1.
December 2018. [Online] Available: https/www.omg.org/spec/UML/[7] DIN
SPEC 91406: “Automatic identification of physical objects and information on physical objects
in IT systems, particularly [oT systems”. December 2019. https://www.beuth.de/de/technische-
regel/din-spec-91406/314564057

RFC 8820: URI Design and Ownership. Internet Engineering Task Force (IETF), 2020. Online.
Available: https://tools.ietf.org/html/rfc8820

https://jira.iais.fraunhofer.de/wiki/pages/createpage.action?spaceKey=HI4&title=Online&linkCreation=true&fromPageId=90801077
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.plattform-i40.de%2FPI40%2FRedaktion%2FEN%2FStandardartikel%2Fspecification-administrationshell.html&data=04%7C01%7CBirgit.Boss%40de.bosch.com%7C9fe86029fd024caea95208d88590548f%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C637406202234283193%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=vToqntRvlwccNwq3WjSCUOLFscNdAI%2FhxFJwqixxvlw%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.plattform-i40.de%2FPI40%2FRedaktion%2FEN%2FStandardartikel%2Fspecification-administrationshell.html&data=04%7C01%7CBirgit.Boss%40de.bosch.com%7C9fe86029fd024caea95208d88590548f%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C637406202234283193%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=vToqntRvlwccNwq3WjSCUOLFscNdAI%2FhxFJwqixxvlw%3D&reserved=0
https://jira.iais.fraunhofer.de/wiki/pages/createpage.action?spaceKey=HI4&title=Online&linkCreation=true&fromPageId=90801077
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.plattform-i40.de%2FPI40%2FRedaktion%2FEN%2FDownloads%2FPublikation%2FDetails-of-the-Asset-Administration-Shell-Part1%2F3%2F0.html&data=04%7C01%7CBirgit.Boss%40de.bosch.com%7C9fe86029fd024caea95208d88590548f%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C637406202234363143%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=bCH04TIy%2FfK3l41bVq%2BMwMROdxsA%2B4xg4Emrb2x6enw%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.plattform-i40.de%2FPI40%2FRedaktion%2FEN%2FDownloads%2FPublikation%2FDetails-of-the-Asset-Administration-Shell-Part1%2F3%2F0.html&data=04%7C01%7CBirgit.Boss%40de.bosch.com%7C9fe86029fd024caea95208d88590548f%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C637406202234363143%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=bCH04TIy%2FfK3l41bVq%2BMwMROdxsA%2B4xg4Emrb2x6enw%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.plattform-i40.de%2FPI40%2FRedaktion%2FEN%2FDownloads%2FPublikation%2FDetails-of-the-Asset-Administration-Shell-Part1%2F3%2F0.html&data=04%7C01%7CBirgit.Boss%40de.bosch.com%7C9fe86029fd024caea95208d88590548f%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C637406202234363143%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=bCH04TIy%2FfK3l41bVq%2BMwMROdxsA%2B4xg4Emrb2x6enw%3D&reserved=0
file:///C:/Users/sbader/AppData/Local/Temp/Tom%20Preston-Werner
https://semver.org/spec/v2.0.0.html
file:///C:/__localWork/Verwaltungsschale%20im%20Detail%20-%20part%201%20V3.0RC01/https/www.omg.org/spec/UML/
https://www.beuth.de/de/technische-regel/din-spec-91406/314564057
https://www.beuth.de/de/technische-regel/din-spec-91406/314564057

Page 88 | Details of the Asset Administration Shell - Part 2

Sebastian Bader, Fraunhofer IAIS

Bernd Berres, MPDV Mikrolab GmbH

Dr. Birgit Boss, Robert Bosch GmbH

Dr. Andreas Graf Gatterburg, Hilscher Gesellschaft fiir Systemautomation mbH
Dr. Michael Hoffmeister, Festo AG & Co. KG

Yevgen Kogan, KUKA Deutschland GmbH

Alexander Kopke, Microsoft Deutschland GmbH

Matthias Lieske, Hitachi Europe GmbH

Torben Miny, Lehrstuhl fur Prozessleittechnik, RWTH Aachen University
Dr. Jorg Neidig, Siemens AG

Andreas Orzelski, Phoenix Contact GmbH & Co. KG

Stefan Pollmeier, ESR Pollmeier GmbH Servo-Antriebstechnik
Manuel Sauer, SAP SE

Daniel Schel, Fraunhofer IPA

Tizian Schréder, OVGU Magdeburg

Mario Thron, Institut f. Automation und Kommunikation e.V. (ifak)
Dr. Thomas Uslénder, Fraunhofer IOSB

Jens Vialkowitsch, Robert Bosch GmbH

Friedrich Vollmar

Jorg Wende, IBM Deutschland GmbH

Constantin Ziesche, Robert Bosch GmbH

Details of the Asset Administration Shell - Part 2| Page 89

This document has been elaborated in the Working Group “Asset Administration Shell” and the Working
Group “Infrastructure of the Asset Administration Shell”, both subgroups of the Working Group on

“Reference Architectures, Standards and Norms “ of Plattform Industrie 4.0.

www.plattform-140.de

	1 Preamble
	1.1 Editorial notes
	1.2 Scope of this Document
	1.3 Structure of the Document
	1.4 Terms & Definitions
	1.5 Abbreviations

	2 Introduction
	3 General
	3.1 Services, Interfaces and Interface Operations
	3.2 Design Principles
	3.3 Semantic References for Operations
	3.4 References and Keys
	3.5 Special Parameters

	4 Interfaces Asset Administration Shell
	4.1 General
	4.2 Asset Administration Shell Interface and Operations
	4.2.1 Interface Asset Administration Shell
	4.2.2 Operation GetAssetAdministrationShell
	4.2.3 Operation PutAssetAdministrationShell
	4.2.4 Operation PatchAssetAdministrationShell
	4.2.5 Operation PutSubmodelReference
	4.2.6 Operation RemoveSubmodelReference

	4.3 Submodel Interface and Operations
	4.3.1 Interface Submodel
	4.3.2 Operation GetSubmodel
	4.3.3 Operation GetAllSubmodelElements
	4.3.4 Operation GetAllSubmodelElementsByParentPathAndSemanticId
	4.3.5 Operation GetAllSubmodelElementsBySemanticId
	4.3.6 Operation GetSubmodelElementByPath
	4.3.7 Operation PutSubmodelElementByPath
	4.3.8 Operation SetSubmodelElementValueByPath
	4.3.9 Operation DeleteSubmodelElementByPath
	4.3.10 Operation InvokeOperationSync
	4.3.11 Operation InvokeOperationAsync
	4.3.12 Operation GetOperationAsyncResult

	4.4 Asset Administration Shell Serialization Interface and Operations
	4.4.1 Interface Asset Administration Shell Serialization
	4.4.2 Operation GetAASX
	4.4.3 Operation GetSerializationByIds

	5 Interfaces Registration and Lookup
	5.1 General
	5.2 Asset Administration Shell Registry Interface and Operations
	5.2.1 Interface Asset Administration Shell Registry
	5.2.2 Operation GetAllAssetAdministrationShellDescriptors
	5.2.3 Operation GetAssetAdministrationShellDescriptorById
	5.2.4 Operation PutAssetAdministrationShellDescriptor
	5.2.5 Operation DeleteAssetAdministrationShellDescriptorById

	5.3 Submodel Registry Interface and Operations
	5.3.1 Interface Submodel Registry
	5.3.2 Operation GetAllSubmodelDescriptors
	5.3.3 Operation GetSubmodelDescriptorById
	5.3.4 Operation PutSubmodelDescriptor
	5.3.5 Operation DeleteSubmodelDescriptorById

	6 Interfaces Repository
	6.1 General
	6.2 Asset Administration Shell Repository Interface and Operations
	6.2.1 Interface Asset Administration Shell Repository
	6.2.2 Operation GetAllAssetAdministrationShells
	6.2.3 Operation GetAssetAdministrationShellById
	6.2.4 Operation GetAllAssetAdministrationShellsByAssetId
	6.2.5 Operation GetAllAssetAdministrationShellsByIdShort
	6.2.6 Operation PutAssetAdministrationShell
	6.2.7 Operation DeleteAssetAdministrationShellById

	6.3 Submodel Repository Interface and Operations
	6.3.1 Interface Submodel Repository
	6.3.2 Operation GetAllSubmodels
	6.3.3 Operation GetSubmodelById
	6.3.4 Operation GetAllSubmodelsBySemanticId
	6.3.5 Operation GetAllSubmodelsByIdShort
	6.3.6 Operation PutSubmodel
	6.3.7 Operation DeleteSubmodelById

	7 Interfaces Publish and Discovery
	7.1 General
	7.2 Asset Administration Shell Basic Discovery Interface and Operations
	7.2.1 Interface Asset Administration Shell Basic Discovery
	7.2.2 Operation GetAllAssetAdministrationShellIdsByAssetId
	7.2.3 Operation PutAssetId

	7.3 Submodel Discovery Basic Interface and Operations
	7.3.1 Interface Submodel Discovery
	7.3.2 Operation GetSubmodelIdsBySemanticId

	8 Interfaces Concept Descriptions Access
	8.1 General
	8.2 Concept Description Repository Interface and Operations
	8.2.1 Interface Concept Description Repository
	8.2.2 Operation GetAllConceptDescriptions
	8.2.3 Operation GetConceptDescriptionById
	8.2.4 Operation GetAllConceptDescriptionsByIdShort
	8.2.5 Operation GetAllConceptDescriptionsByIsCaseOf
	8.2.6 Operation GetAllConceptDescriptionsWithDataSpecificationReference
	8.2.7 Operation PutConceptDescription
	8.2.8 Operation DeleteConceptDescriptionById

	9 Data Types for Payload
	9.1 General
	9.2 Metamodel Specification Details: Designators
	9.2.1 AssetAdministrationShellDescriptor
	9.2.2 SubmodelDescriptor
	9.2.3 Endpoint
	9.2.4 Status Code, Error Handling & Result Messages
	9.2.4.1 Generic Status Codes
	9.2.4.2 General Result Object

	10 Base Operation Parameters
	10.1 General
	10.2 OutputModifier in Operations
	10.3 Serialization in Specified Formats (Output Modifier)
	10.3.1 General
	10.3.2 Serialization in JSON Values Format

	10.4 SearchOptions Used in Operations

	11 Summary and Outlook
	Annex A. Templates Used for Specification
	Annex B. Legend for UML Modelling
	i. OMG UML General
	ii. Notes to Graphical Representation

	Annex C. Bibliography

